In Metazoa, the diversity of transcripts produced by the RNA Polymerase II is generated essentially through post-transcriptional processing of the nascent transcripts. The regulation of exon inclusion by alternative splicing is one of the main sources of this diversity, which leads to the expansion of the proteome. The portfolio of alternative transcripts remains largely underestimated. Improvement of the sequencing technologies has enhanced the characterization of RNA isoforms and led to the perpetual incrementation of gene expression diversity. Here, we describe a high throughput approach to assess in-depth the splicing regulation of target gene(s) using the third-generation sequencing (TGS) technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2521-7_6 | DOI Listing |
Genes Dev
January 2025
Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA;
The Rbfox proteins regulate alternative pre-mRNA splicing by binding to the RNA element GCAUG. In the nucleus, most of Rbfox is bound to the large assembly of splicing regulators (LASR), a complex of RNA-binding proteins that recognize additional RNA motifs. However, it remains unclear how the different subunits of the Rbfox/LASR complex act together to bind RNA and regulate splicing.
View Article and Find Full Text PDFCells Dev
January 2025
Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Querétaro, Mexico. Electronic address:
fos genes, transcription factors with a common basic region and leucine zipper domains binding to a consensus DNA sequence (TGA{}TCA), are evolutionarily conserved in eukaryotes. Homologs can be found in many different species from yeast to vertebrates. In yeast, the homologous GCN4 gene is required to mediate "emergency" situations like nutrient deprivation and the unfolded protein response.
View Article and Find Full Text PDFMol Genet Genomic Med
February 2025
Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.
Background: SYNGAP1 encodes a Ras/Rap GTPase-activating protein that is predominantly expressed in the brain with the functional roles in regulating synaptic plasticity, spine morphogenesis, and cognition function. Pathogenic variants in SYNGAP1 have been associated with a spectrum of neurodevelopmental disorders characterized by developmental delays, intellectual disabilities, epilepsy, hypotonia, and the features of autism spectrum disorder. The aim of this study was to identify a novel SYNGAP1 gene variant linked to neurodevelopmental disorders and to evaluate the pathogenicity of the detected variant.
View Article and Find Full Text PDFGenes Dis
May 2025
Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
RNA velocities and generalizations emerge as powerful approaches for extracting time-resolved information from high-throughput snapshot single-cell data. Yet, several inherent limitations restrict applying the approaches to genes not suitable for RNA velocity inference due to complex transcriptional dynamics, low expression, or lacking splicing dynamics, or data of non-transcriptomic modality. Here, we present GraphVelo, a graph-based machine learning procedure that uses as input the RNA velocities inferred from existing methods and infers velocity vectors lying in the tangent space of the low-dimensional manifold formed by the single cell data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!