Design and Construction of Unmanned Ground Vehicles for Sub-canopy Plant Phenotyping.

Methods Mol Biol

Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.

Published: July 2022

Unmanned ground vehicles can capture a sub-canopy perspective for plant phenotyping, but their design and construction can be a challenge for scientists unfamiliar with robotics. Here we describe the necessary components and provide guidelines for designing and constructing an autonomous ground robot that can be used for plant phenotyping.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2537-8_16DOI Listing

Publication Analysis

Top Keywords

plant phenotyping
12
design construction
8
unmanned ground
8
ground vehicles
8
construction unmanned
4
vehicles sub-canopy
4
sub-canopy plant
4
phenotyping unmanned
4
vehicles capture
4
capture sub-canopy
4

Similar Publications

Genome-Wide Association Study and Genomic Predictions for Hydroxycinnamate Concentrations in Maize Stover.

J Agric Food Chem

January 2025

UA MBG-UVIGO, Misión Biológica de Galicia (CSIC), Pazo de Salcedo, Pontevedra 36143, España.

Hydroxycinnamates, like ferulate (FA) and -coumarate (CA), are important components of maize cell walls, which influence pest resistance, ruminal digestibility, and biofuel production. Increasing their concentration has been linked to increased pest resistance, but also may lead to a decrease in nutritional value or bioethanol production efficiency. Therefore, improving forage quality or biofuel production without compromising plant resistance and a thorough understanding of the biosynthesis and deposition of these compounds is necessary, especially in stover, which is the feedstock for second-generation biofuel production and determines animal forage quality.

View Article and Find Full Text PDF

Establishment of a CRISPR-Cas9-Mediated Genome Editing System in Flax.

CRISPR J

January 2025

Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.

Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated.

View Article and Find Full Text PDF

Identification and characterization of a novel QTL for barley yellow mosaic disease resistance from bulbous barley.

Plant Genome

March 2025

Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.

Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.

View Article and Find Full Text PDF

Unlabelled: Genomic selection-based breeding programs offer significant advantages over conventional phenotypic selection, particularly in accelerating genetic gains in plant breeding, as demonstrated by simulations focused on combating Fusarium head blight (FHB) in wheat. FHB resistance, a crucial trait, is challenging to breed for due to its quantitative inheritance and environmental influence, leading to slow progress using conventional breeding methods. Stochastic simulations in our study compared various breeding schemes, incorporating genomic selection (GS) and combining it with speed breeding, against conventional phenotypic selection.

View Article and Find Full Text PDF

MaGA20ox2f, an OsSD1 homolog, regulates flowering time and fruit yield in banana.

Mol Breed

January 2025

Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China.

Unlabelled: Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, and , are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', ) in the banana genome. The expression of is confined to leaves, peduncles, fruit peels, and pulp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!