In this study, the effect of K-feldspar on the behavior of alkali-activated slag pastes (AAS) before and after exposure to seawater was evaluated by measuring the compressive strength and the microstructure. To achieve this objective, the mixtures were prepared upon partial replacement of ground granulated-blast furnace slag (GGBFS) with calcined and un-calcined feldspar fine particles (termed as FS and CFS) at levels ranging from 5 to 20%, by mass. Under processing conditions, the solidified specimens were immersed for 1, 7, 14, and 28 days in 100% RH at 40 ± 2 °C. After 28 days, a group of samples having the same composition were soaked in seawater solution for 1, 3, and 6 months. The new phases were evaluated using X-ray diffraction (XRD), thermogravimetric analysis (TGA/DTG), and scanning electron microscopy (SEM). The inclusion of FS and/or CFS in AAS enhances the performance of the pastes in normal and harsh conditions in relation to their reference counterparts. Among all the mixtures that were tested, alkali-activated composite comprising 15% CFS indicated more durable properties in terms of increased compressive strength and dense morphological structure after exposure to an aggressive environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-22217-3 | DOI Listing |
Sci Rep
January 2025
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Veszprém, Hungary.
This study endeavors to tackle the energy requirements of the building sector by employing passive design strategies. However, there exists a dearth of comprehension regarding the energy efficiency performance of foamed alkali-activated materials. To bridge this research gap, the study proposes a solution in the form of a thermally proficient wall material crafted from ceramic tile dust (CTD), class C fly ash (FA), and Ground Granulated Blast-Furnace Slag (GGBS), all of which are industrial by-products.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Architectural and Construction Design, Faculty of Architecture, Wrocław University of Science and Technology, Politechnika Wrocławska 27, 50-370 Wrocław, Poland.
This research presents a proposal for alkali-activated permeable concrete composites with the use of industrial by-products, including ground granulated blast-furnace slag (GGBS) and waste-foundry sand, as well as agro-desecrate product, i.e., sugarcane bagasse ash (SBA).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Architecture and Civil Engineering, TU Dortmund University, 44227 Dortmund, Germany.
Industrial and construction wastes make up about half of all world wastes. In order to reduce their negative impact on the environment, it is possible to use part of them for concrete production. Using experimental-statistical modeling techniques, the combined effect of brick powder, recycling sand, and alkaline activator on fresh and hardened properties of self-compacting concrete for the production of textile-reinforced concrete was investigated.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Zhongtu Dadi International Architectural Design Co., Ltd., Shijiazhuang 050000, China.
Civil briquette furnace slag (FS), as a type of industrial solid waste, is not currently being recycled as a resource by the building materials industry. This study focuses on the potential of FS in the formulation of alkali-activated materials (AAMs) compared with calcium carbide slag (CS). This study encompasses three distinct AAM systems: alkali-activated fly ash alone (AAFA), fly ash-slag powder blends (AAFB), and slag powder alone (AABS).
View Article and Find Full Text PDFSci Rep
January 2025
Civil and Environmental Engineering Faculty, Amirkabir University of Technology, Tehran, Iran.
This investigation addresses the reinforcement of rammed earth (RE) structures by integrating carpet polyacrylic yarn waste (CPYW) generated from the carpet production process and employing Ground Granulated Blast-Furnace Slag (GGBS) as a stabilizer, in conjunction with alkali activators potassium hydroxide (KOH), to enhance their mechanical properties. The study included conducting Unconfined Compressive Strength (UCS) tests and Brazilian Tensile Strength (BTS) tests on plain samples, GGBS-stabilized (SS) samples, CPYW-reinforced (CFS) samples, and samples reinforced with a combination of GGBS and CPYW (SCFS). The results showed that the mechanical and resistance properties of the CFS and SCFS samples were improved; these findings were confirmed by the presence of more cohesive GGBS gel and fibers as seen in FE-SEM and microscopic images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!