Background: A rare coding variant, P522R, in the phospholipase C gamma 2 (PLCG2) gene has been identified as protective against late-onset Alzheimer's disease (AD), but the mechanism is unknown. PLCG2 is exclusively expressed in microglia within the central nervous system, and altered microglial function has been implicated in the progression of AD.
Methods: Healthy control hiPSCs were CRISPR edited to generate cells heterozygous and homozygous for the PLCG2 variant. Microglia derived from these hiPSC's were used to investigate the impact of PLCγ2 on disease relevant processes, specifically microglial capacity to take up amyloid beta (Aβ) and synapses. Targeted qPCR assessment was conducted to explore expression changes in core AD linked and microglial genes, and mitochondrial function was assessed using an Agilent Seahorse assay.
Results: Heterozygous expression of the P522R variant resulted in increased microglial clearance of Aβ, while preserving synapses. This was associated with the upregulation of a number of genes, including the anti-inflammatory cytokine Il-10, and the synapse-linked CX3CR1, as well as alterations in mitochondrial function, and increased cellular motility. The protective capacity of PLCγ2 appeared crucially dependent on (gene) 'dose', as cells homozygous for the variant showed reduced synapse preservation, and a differential gene expression profile relative to heterozygous cells.
Conclusion: These findings suggest that PLCγ2 may result in increased surveillance by microglia, and prime them towards an anti-inflammatory state, with an increased capacity to respond to increasing energy demands, but highlights the delicate balance of this system, with increasing PLCγ2 'dose' resulting in reduced beneficial impacts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329165 | PMC |
http://dx.doi.org/10.1007/s00018-022-04473-1 | DOI Listing |
Monoclon Antib Immunodiagn Immunother
January 2025
Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
CD300a and CD300A, among the CD300 immunoglobulin (Ig)-like receptor family members in mice and humans, respectively, are expressed on myeloid cell lineage. The interaction of CD300a and CD300A with their ligands phosphatidylserine and phosphatidylethanolamine, respectively, exposed on the plasma membrane of dead cells mediate an inhibitory signal in myeloid cells. We previously reported that a neutralizing antimouse CD300a monoclonal antibody (mAb) enhanced efferocytosis by macrophages and ameliorated acute ischemic stroke (AIS) in mice.
View Article and Find Full Text PDFCancer Res Commun
January 2025
University of British Columbia, Vancouver, BC, Canada.
NF1 encodes the multifunctional tumour suppressor protein, neurofibromin, which is best known for its causative role in Neurofibromatosis type 1 and in regulating MAPK signaling. Neurofibromin, in a context-specific manner, is involved in various tumorigenic processes, including those in melanocytes. This study investigated whether NF1 loss can collaborate with oncogenic GNAQ to promote melanoma in the dermis or eyes, where the G alpha q pathway is almost always activated.
View Article and Find Full Text PDFUnlabelled: is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin.
View Article and Find Full Text PDFThe heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role. Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by rare compound heterozygous variants in RPL3L, a muscle-specific ribosomal protein that replaces the ubiquitous RPL3 in cardiac ribosomes. -linked heart failure represents the only known human disease arising from mutations in tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood despite an increasing number of reported cases.
View Article and Find Full Text PDFInt J Clin Exp Pathol
December 2024
School of Stomatology, Hunan University of Medicine No. 492 Jinxi South Road, Huaihua 418000, Hunan, China.
Background: B-cell specific Moloney MLV insertion site-1 (Bmi-1) belongs to the polycomb group (PcG) gene and is a transcriptional suppressor to maintain appropriate gene expression patterns during development. To investigate whether the Bmi-1 gene has a corrective effect on bone senescence induced in Bmi-1 mice through regulating the bone microenvironment.
Methods: Littermate heterozygous male and female mice (Bmi-1) were used in this study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!