Vascular endothelial cells (ECs) have been shown to be mechanoresponsive to the forces of blood flow, including fluid shear stress (FSS), the frictional force of blood on the vessel wall. Recent reports have shown that FSS induces epigenetic changes in chromatin. Epigenetic changes, such as methylation and acetylation of histones, not only affect gene expression but also affect chromatin condensation, which can alter nuclear stiffness. Thus, we hypothesized that changes in chromatin condensation may be an important component for how ECs adapt to FSS. Using both in vitro and in vivo models of EC adaptation to FSS, we observed an increase in histone acetylation and a decrease in histone methylation in ECs adapted to flow as compared with static. Using small molecule drugs, as well as vascular endothelial growth factor, to change chromatin condensation, we show that decreasing chromatin condensation enables cells to more quickly align to FSS, whereas increasing chromatin condensation inhibited alignment. Additionally, we show data that changes in chromatin condensation can also prevent or increase DNA damage, as measured by phosphorylation of γH2AX. Taken together, these results indicate that chromatin condensation, and potentially by extension nuclear stiffness, is an important aspect of EC adaptation to FSS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582801 | PMC |
http://dx.doi.org/10.1091/mbc.E22-02-0064 | DOI Listing |
Nat Commun
December 2024
Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs.
View Article and Find Full Text PDFInt J Biochem Cell Biol
December 2024
MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China. Electronic address:
Disulfiram (DSF) and copper (Cu) in combination exhibit powerful anti-cancer effect on a variety of cancer cell lines. Here, we found that DSF/Cu facilitated the accumulation of intracellular reactive oxygen species (ROS), and induced ROS-dependent apoptosis accompanied by chromatin condensation and phosphatidylserine externalization in MCF-7 cells. DSF/Cu caused caspase-independent apoptosis by promoting the AIF translocation from mitochondria to nucleus.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Bioengineering, Stanford University, Stanford, California, USA.
Osteoarthritis (OA) is a prevalen degenerative joint disease with no FDA-approved therapies that can halt or reverse its progression. Current treatments address symptoms like pain and inflammation, but not underlying disease mechanisms. OA progression is marked by increased inflammation and extracellular matrix (ECM) degradation of the joint cartilage.
View Article and Find Full Text PDFbioRxiv
December 2024
Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
Quiescence in is a reversible G crucial for long-term survival under nutrient-deprived conditions. During quiescence, the genome is hypoacetylated and chromatin undergoes significant compaction. However, the 3D structure of the ribosomal DNA (rDNA) locus in this state is not well understood.
View Article and Find Full Text PDFCurr Opin Genet Dev
December 2024
Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA. Electronic address:
CCCTC-binding factor (CTCF) is a key regulator of 3D genome organization and transcriptional activity. Beyond its well-characterized role in facilitating cohesin-mediated loop extrusion, CTCF exhibits several cohesin-independent activities relevant to chromatin structure and various nuclear processes. These functions include patterning of nucleosome arrangement and chromatin accessibility through interactions with ATP-dependent chromatin remodelers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!