Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We computationally study the spontaneous phase separation of ternary fluid mixtures using the lattice Boltzmann method both when all the surface tensions are equal and when they have different values. To rationalise the phase diagram of possible phase separation mechanisms, previous theoretical works typically rely on analysing the sign of the eigenvalues resulting from a simple linear stability analysis, but we find this does not explain the observed simulation results. Here, we classify the possible separation pathways into four basic mechanisms, and develop a phenomenological model that captures the composition regimes where each mechanism is prevalent. We further highlight that the dominant mechanism in ternary phase separation involves enrichment and instability of the minor component at the fluid-fluid interface, which is absent in the case of binary fluid mixtures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2sm00413e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!