Aims: Vagus nerve stimulation (VNS) is a neuromodulation therapy for children with drug-resistant epilepsy (DRE). The efficacy of VNS is heterogeneous. A prediction model is needed to predict the efficacy before implantation.
Methods: We collected data from children with DRE who underwent VNS implantation and received regular programming for at least 1 year. Preoperative clinical information and scalp video electroencephalography (EEG) were available in 88 children. Synchronization features, including phase lag index (PLI), weighted phase lag index (wPLI), and phase-locking value (PLV), were compared between responders and non-responders. We further adapted a support vector machine (SVM) classifier selected from 25 clinical and 18 synchronization features to build a prediction model for efficacy in a discovery cohort (n = 70) and was tested in an independent validation cohort (n = 18).
Results: In the discovery cohort, the average interictal awake PLI in the high beta band was significantly higher in responders than non-responders (p < 0.05). The SVM classifier generated from integrating both clinical and synchronization features had the best prediction efficacy, demonstrating an accuracy of 75.7%, precision of 80.8% and area under the receiver operating characteristic (AUC) of 0.766 on 10-fold cross-validation. In the validation cohort, the prediction model demonstrated an accuracy of 61.1%.
Conclusion: This study established the first prediction model integrating clinical and baseline synchronization features for preoperative VNS responder screening among children with DRE. With further optimization of the model, we hope to provide an effective and convenient method for identifying responders before VNS implantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532924 | PMC |
http://dx.doi.org/10.1111/cns.13923 | DOI Listing |
Food Chem
December 2024
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
The levels of capsaicin (CAP) and hydroxy-α-sanshool (α-SOH) are crucial for evaluating the spiciness and numbing sensation in spicy hotpot seasoning. Although liquid chromatography can accurately measure these compounds, the method is invasive. This study aimed to utilize hyperspectral imaging (HSI) combined with machine learning for the nondestructive detection of CAP and α-SOH in hotpot seasoning.
View Article and Find Full Text PDFSemin Arthritis Rheum
December 2024
Department of Rheumatology and Joint and Bone Research Unit. Fundación Jiménez Díaz University Hospital and Health Research Institute Fundación Jiménez Díaz (IIS-FJD, UAM), Autonomous University of Madrid, Madrid, Spain. Electronic address:
Purpose: The primary objective of this prospective, longitudinal, observational, single-centre study was to evaluate the association between ultrasound-assessed lesions of dactylitis and the diagnosis of psoriatic arthritis (PsA) in patients with psoriasis (PsO) and hand arthralgia.
Methods: We included adult patients diagnosed with PsO with hand arthralgia, with or without other musculoskeletal complaints. They were clinically assessed at baseline, 6 and 12 months by a rheumatologist blinded to the ultrasound findings.
J Electromyogr Kinesiol
December 2024
School of Information Science and Technology, Dalian Maritime University, Linghai Road 1, Dalian, Liaoning Province 116026, China. Electronic address:
This study proposed a U-Net based partial convolutional time-domain model for a real-time high-density surface electromyography (HD-sEMG) decomposition. The model combines U-Net and a separation block containing partial convolution, aiming to efficiently identify motor units (MUs) without preprocessing. The proposed U-Net based network was trained by the HD-sEMG signals with innervation pulse trains (IPTs) labels, and the results are compared between different step sizes, noises, and model structures under the sliding time window with 120 sampling points.
View Article and Find Full Text PDFInvest Radiol
October 2024
From the Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich, Zurich, Switzerland (B.K., F.E., J.K., T.F., L.J.); Advanced Radiology Center, Department of Diagnostic Imaging and Oncological Radiotherapy, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy (C.S., A.R.L.); and Section of Radiology, Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy (A.R.L.).
Objectives: The aim of this study was to evaluate the feasibility and efficacy of visual scoring, low-attenuation volume (LAV), and deep learning methods for estimating emphysema extent in x-ray dose photon-counting detector computed tomography (PCD-CT), aiming to explore future dose reduction potentials.
Methods: One hundred one prospectively enrolled patients underwent noncontrast low- and chest x-ray dose CT scans in the same study using PCD-CT. Overall image quality, sharpness, and noise, as well as visual emphysema pattern (no, trace, mild, moderate, confluent, and advanced destructive emphysema; as defined by the Fleischner Society), were independently assessed by 2 experienced radiologists for low- and x-ray dose images, followed by an expert consensus read.
J Acquir Immune Defic Syndr
December 2024
Division of Nephrology, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY.
Background: The Veterans Aging Cohort Study (VACS) Index is a summary measure of routinely obtained clinical variables that predicts numerous health outcomes. Since there are currently no tools to predict acute kidney injury (AKI) in persons with HIV (PWH), we investigated the association of preadmission VACS Index with hospital AKI in PWH.
Methods: We conducted an observational study of PWH hospitalized in a New York City health system between 2010-2019.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!