Biocompatible and biodegradable materials have been used for fabricating polymeric microneedles to deliver therapeutic drug molecules through the skin. Microneedles have advantages over other drug delivery methods, such as low manufacturing cost, controlled drug release, and the reduction or absence of pain. The study examined the delivery of amphotericin B, an antifungal agent, using microneedles that were fabricated using a micromolding technique. The microneedle matrix was made from Gantrez AN-119 BF, a benzene-free methyl vinyl ether/maleic anhydride copolymer. The Gantrez AN-119 BF was mixed with water; after water evaporation, the polymer exhibited sufficient strength for microneedle fabrication. Molds cured at room temperature remained sharp and straight. SEM images showed straight and sharp needle tips; a confocal microscope was used to determine the height and tip diameter for the microneedles. Nanoindentation was used to obtain the hardness and Young's modulus values of the polymer. Load-displacement testing was used to assess the failure force of the needles under compressive loading. These two mechanical tests confirmed the mechanical properties of the needles. In vitro studies validated the presence of amphotericin B in the needles and the antifungal properties of the needles. Amphotericin B Gantrez microneedles fabricated in this study showed appropriate characteristics for clinical translation in terms of mechanical properties, sharpness, and antifungal properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331399PMC
http://dx.doi.org/10.3390/pharmaceutics14081551DOI Listing

Publication Analysis

Top Keywords

anhydride copolymer
8
microneedles fabricated
8
gantrez an-119
8
mechanical properties
8
properties needles
8
antifungal properties
8
microneedles
6
micromolding amphotericin-b-loaded
4
amphotericin-b-loaded methoxyethylene-maleic
4
methoxyethylene-maleic anhydride
4

Similar Publications

Poly(styrene--maleic anhydride) (SMAnh) is a petroleum-based copolymer with desirable properties that afford utility in both industrial and academic fields. The reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization of the bioderived comonomers, indene and itaconic anhydride, was explored using three chain transfer agents with varying activity, and generally well-controlled ( < 1.40) polymerizations were observed.

View Article and Find Full Text PDF

Tunable Cluster Luminescence and High Quantum Yield in Amine-Modified Maleic Anhydride Polymers.

Langmuir

January 2025

The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.

Cluster luminescent materials (CLgens) with nonconjugated structures have attracted considerable attention. However, their low quantum yield and limited emission wavelengths, which are confined to the blue-green spectrum, continue to restrict their applicability. In this study, maleic anhydride polymer chains were modified with -tristyrylene-1,2-diamine (TPM-NH), creating a secondary donor-acceptor structure through freely rotatable phenyl groups and amino-anhydride interactions.

View Article and Find Full Text PDF

Core-Shell PLGA Nanoparticles: In Vitro Evaluation of System Integrity.

Biomolecules

December 2024

Faculty of Chemical and Pharmaceutical Technologies and Biomedical Preparations, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia.

Article Synopsis
  • The study compared core-shell nanoparticles with a PLGA core and various polymer shells, focusing on their structural integrity.
  • Different methods were used to prepare the nanoparticles, and fluorescent labeling was employed to analyze their properties and confirm core-shell structure.
  • Results showed that the polymer shells improved cellular uptake in glioma cells and maintained structural integrity, suggesting a useful framework for nanoparticle development.
View Article and Find Full Text PDF

Polymer-based catalysts have garnered significant interest for their efficiency, reusability, and compatibility with various synthesis processes. In catalytic applications, polymers offer the advantage of structural versatility, enabling functional groups to be tailored for specific catalytic activities. In this study, we developed a novel magnetic copolymer of methyl methacrylate and maleic anhydride (PMMAn), synthesized via in situ chemical polymerization of methyl methacrylate onto maleic anhydride, using benzoyl peroxide as a free-radical initiator.

View Article and Find Full Text PDF

Compared to antimicrobial agents, anti-adhesive surfaces can reduce bacteria adhesion and biofilm formation in catheters, providing better selectivity, efficiency, and device life span. In this research, novel anionic surface biomaterials were created and tested to reduce microbial adhesion and colonization in medical device coating. Maleic anhydride (MA) was polymerized with 2-HEMA in varying amounts to produce a p(HEMA--MA) hydrogel copolymer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!