A unique characteristic of the African horse sickness virus (AHSV) major core protein VP7 is that it is highly insoluble, and spontaneously forms crystalline particles in AHSV-infected cells and when expressed in vitro. The aggregation of AHSV VP7 into these crystals presents many problems in AHSV vaccine development, and it is unclear whether VP7 aggregation affects AHSV assembly or contributes to AHSV pathogenesis. Here, we set out to abolish VP7 self-assembly by targeting candidate amino acid regions on the surface of the VP7 trimer via site-directed mutagenesis. It was found that the substitution of seven amino acids resulted in the complete disruption of AHSV VP7 self-assembly, which abolished the formation of VP7 crystalline particles and converted VP7 to a fully soluble protein still capable of interacting with VP3 to form core-like particles. This work provides further insight into the formation of AHSV VP7 crystalline particles and the successful development of AHSV vaccines. It also paves the way for future research by drawing comparisons with similar viral phenomena observed in human virology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331310 | PMC |
http://dx.doi.org/10.3390/v14081624 | DOI Listing |
Int J Biol Macromol
January 2025
Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:
In this study, the role of a transition metal complex in improving hydrolysis efficiency during nanocellulose production was analysed. Cellulose nanocrystals (CNCs) were extracted from date seeds by incorporating a copper metal complex during HCl hydrolysis. In contrast to traditional HCl hydrolysis at moderate conditions, which yielded only microcrystalline cellulose (MCC), this approach resulted in the extraction of CNCs with a 10 % improved yield compared to MCC.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
The morphology and kinetics of the crystal growth front have been poorly explored at the particle level. Here, we experimentally observe the crystal growth front in liquid with single-particle kinetics using colloid systems and reveal a surface layer of polymorphic crystal near the solid-solid transition when the two crystals form a low-energy coherent interface. The thickness of the surface crystal can exceed 50 particles and grows logarithmically with the temperature as approaching the solid-solid transition which follows premelting theory.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517619, India.
Although impurities are unavoidable in real-world and experimental systems, most numerical studies on nucleation focus on pure (impurity-free) systems. As a result, the role of impurities in phase transitions remains poorly understood, especially for systems with complex free energy landscapes featuring one or more intermediate metastable phases. In this study, we employed Monte Carlo simulations to investigate the effects of static impurities (quenched disorder) of varying length scales and surface morphologies on the crystal nucleation mechanism and kinetics in the Gaussian core model system-a representative model for soft colloidal systems.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Low Temperature and Structure Research, PAS, Okolna 2, 50-422 Wroclaw, Poland.
This paper discusses the origin of emission quenching in yttrium orthovanadate codoped with Eu and Sb ions. Highly crystalline yttrium orthovanadate nanoparticles with chemical composition YEuSbVO ( = 0-5.4 mol %, = 0-2.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Physics and Electronics, Christ University, Bengaluru, Karnataka, India 560029.
Pain and inflammation are common symptoms of a majority of the diseases. Chronic pain and inflammation, as well as related dreadful disorders, remain difficult to control due to a lack of safe and effective medications. In this work, biocompatible platinum nanoparticles with significant analgesic and anti-inflammatory action were synthesized through a wet chemical method using polyethylene glycol-400 as a capping agent and sodium borohydride as a reducing agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!