Microalgae: A Promising Future.

Microorganisms

Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.

Published: July 2022

Microalgae are photosynthetic unicellular microorganisms that represent an extremely important component of the aquatic ecosystem productivity, diversity, and functioning [...].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331014PMC
http://dx.doi.org/10.3390/microorganisms10081488DOI Listing

Publication Analysis

Top Keywords

microalgae promising
4
promising future
4
future microalgae
4
microalgae photosynthetic
4
photosynthetic unicellular
4
unicellular microorganisms
4
microorganisms represent
4
represent extremely
4
extremely component
4
component aquatic
4

Similar Publications

A Rapid and Reversible Molecular "Switch" Regulating Protein Expression in Chlamydomonas reinhardtii.

Plant Cell Environ

January 2025

Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.

Chlamydomonas reinhardtii, a prominent chassis in synthetic biology, faces limitations in regulating the expression of exogenous genes. A destabilization domain (DD)/Shield-1 system, originally derived from mammals, offers a ligand-dependent control of stability, making it a valuable tool. This system utilises the destabilization domain to induce rapid degradation of target protein unless stabilised by Shield-1, a synthetic ligand.

View Article and Find Full Text PDF

Improving protein hydrolysis and digestibility in biomass through recombinant peptidases (EC 3.4): Opportunities for monogastric animal diets.

Heliyon

January 2025

CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal.

This study investigates the use of recombinant peptidases (EC 3.4) to improve protein hydrolysis and digestibility in , with a focus on addressing the challenge of reduced protein bioavailability for monogastric animals due to resistant protein-pigment formations, such as phycocyanin, and increased digesta viscosity caused by jellification properties. A library of 192 peptidases was generated, from which 142 soluble peptidases were expressed in and subsequently screened for activity against an suspension .

View Article and Find Full Text PDF

Continuous cropping decreases soil nutrients and destroys microbial community structure, so the development of eco-friendly and effective biofertilizers is necessary under present conditions. In this study, the preserving microalgal strain sp. (H) was firstly selected to be combined with agroforestry waste (shell powder, straw fermentation liquid) and the agroforestry microorganism sp.

View Article and Find Full Text PDF

Removal of cyanobacterial harmful algal blooms (HABs) from contaminated local park lake using mycelial pellets.

Heliyon

January 2025

Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.

Eutrophication and hypereutrophication in lakes foster harmful blue-green algal blooms, which pose a significant threat to the ecological health of freshwater reservoirs. This study investigated the effectiveness of the bio-flocculation approach using the fungus strain BGF4A1 to remove these harmful blooms, specifically targeting cyanobacterial species like PCC-7914. Key flocculation parameters, cyanobacterial concentrations, adsorption kinetics, and pellet morphology were explored in this research.

View Article and Find Full Text PDF

Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!