The selective oxidation of alcohols, leading to appropriate aldehydes, is widely recognised as one of the most important reactions in organic synthesis. With ever-increasing environmental concerns, much attention has been directed toward developing catalytic protocols that use molecular oxygen as an oxidant. An ideal green oxidation process should employ a highly active, selective and recyclable catalyst that can work with oxygen under mild conditions. This paper presents a successful application of densely grafted silver nanostructures with stable nitroxide radicals (N-AgNPs) as an effective, easily-recovered and regenerable catalyst for the selective oxidation of alcohols. The fabricated ultra-small and narrow dispersive silver nanoparticles have been fully characterised using physicochemical methods (TEM, DLS, XPS, TGA). N-AgNPs have been successfully applied to oxidise several model alcohols: benzyl alcohol, 4-pyridinemethanol, furfuryl alcohol, 1-phenyl ethanol, n-heptanol and allyl alcohol under mild conditions using oxygen as a stoichiometric oxidant. Notably, the fabricated nitroxide grafted silver nanoparticles (N-AgNPs) were reused more than ten times in the oxidation of a series of primary alcohols to corresponding aldehydes under mild conditions with very high yields and a selectivity close to 100%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330881PMC
http://dx.doi.org/10.3390/nano12152542DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
12
selective oxidation
12
oxidation alcohols
12
mild conditions
12
densely grafted
8
catalyst selective
8
grafted silver
8
oxidation
5
alcohols
5
silver
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!