In this paper, we realize a 3.96 kW all-fiberized and polarization-maintained (PM) amplifier with narrow linewidth and near-diffraction-limited beam quality. Based on a master oscillator power amplifier (MOPA) configuration seeded with phase-modulated single-frequency laser, a 3.96 kW signal laser is achieved with a 3 dB linewidth of 0.62 nm at the pump power of 5.02 kW. At the maximum output power, the polarization extinction ratio (PER) is ~13.9 dB, and the beam quality (M factor) is M = 1.31, M = 1.41. As far as we know, this is the maximum output power of PM narrow linewidth fiber laser with near-diffraction-limited beam quality and all-fiber format.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332766 | PMC |
http://dx.doi.org/10.3390/nano12152541 | DOI Listing |
Nano Lett
January 2025
Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.
Metasurfaces supporting narrowband resonances are of significant interest in photonics for molecular sensing, quantum light source engineering, and nonlinear photonics. However, many device architectures rely on large refractive index dielectric materials and lengthy fabrication processes. In this work, we demonstrate quasi-bound states in the continuum (quasi-BICs) using a polymer metasurface exhibiting experimental quality factors of 305 at visible wavelengths.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China.
The elemental imaging of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatial information on elements and therefore can further investigate the growth or evolution processes of an analyte. However, the accurate determination of spatial information is limited by the decoupling between the elemental distribution and mass spectrometry signals. This phenomenon, which is more distinct when high-diffusion ablation cells are used, arises from the overlap of ablation and the transport dispersion of aerosols.
View Article and Find Full Text PDFUltramicroscopy
January 2025
Nanopatterning-Nanoanalysis-Photonic Materials Group, Department of Physics, Paderborn University, Warburgerstr. 100, Paderborn, 33098, Germany. Electronic address:
Electron energy-loss spectroscopy (EELS) performed in a scanning transmission electron microscope (STEM) is susceptible to noise, just like every other measurement. EELS measurements are also affected by signal blurring, related to the energy distribution of the electron beam and the detector point spread function (PSF). Moreover, the signal blurring caused by the detector introduces correlation effects, which smooth the noise.
View Article and Find Full Text PDFDentomaxillofac Radiol
January 2025
Associate Professor, Division of Oral Diagnostic Sciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.
Objectives: To compare a novel photon-counting sensor, two CBCT protocols and two CMOS sensors on the detection of gaps between a gutta-percha cone and root canal walls.
Methods: Twenty-five mandibular incisors were prepared to 45/.04 (size/taper) at working length.
Light Sci Appl
January 2025
Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité and CNRS, Paris, 75013, France.
Vortex beams are currently drawing a great deal of interest, from fundamental research to several promising applications. While their generation in bulky optical devices limits their use in integrated complex systems, metasurfaces have recently proven successful in creating optical vortices, especially in the linear regime. In the nonlinear domain, of strategic importance for the future of classical and quantum information, to date orbital angular momentum has only been created in qualitative ways, without discussing discrepancies between design and experimental results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!