Although reaching target heart rate (HR) before coronary CT angiography (CCTA) is still of importance, adequate HR control remains a challenge for many patients. Purpose-built cardiac scanners may provide optimal image quality at higher HRs by further improving temporal resolution. We aimed to compare the amount of motion artifacts on CCTA acquired using a dedicated cardiac CT (DCCT) compared to a conventional multidetector CT (MDCT) scanner. We compared 80 DCCT images to 80 MDCT scans matched by sex, age, HR, and coronary dominance. Image quality was graded on a per-patient, per-vessel and per-segment basis. Motion artifacts were assessed using Likert scores (1: non-diagnostic, 2: severe artifacts, 3: mild artifacts, 4: no artifacts). Patients were stratified into four groups according to HR (<60/min, 60−65/min, 66−70/min and >70/min). Overall, 2328 coronary segments were evaluated. DCCT demonstrated superior overall image quality compared to MDCT (3.7 ± 0.4 vs. 3.3 ± 0.7, p < 0.001). DCCT images yielded higher Likert scores in all HR ranges, which was statistically significant in the 60−65/min, 66−70/min and >70/min ranges (3.9 ± 0.2 vs. 3.7 ± 0.2, p = 0.008; 3.5 ± 0.5 vs. 3.1 ± 0.6, p = 0.048 and 3.5 ± 0.4 vs. 2.7 ± 0.7, p < 0.001, respectively). Using a dedicated cardiac scanner results in fewer motion artifacts, which may allow optimal image quality even in cases of high HRs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369248 | PMC |
http://dx.doi.org/10.3390/jcm11154336 | DOI Listing |
Radiographics
January 2025
From the Department of Radiology, Cardiovascular Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., P.A.A.); Department of Radiology, Division of Cardiothoracic Imaging, Jefferson University Hospitals, Philadelphia, Pa (B.S.); Department of Radiology, Baylor Health System, Dallas, Tex (P.R.); Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR (M.Y.N.); and Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, Ohio (M.A.B.).
Cardiac MRI (CMR) is an important imaging modality in the evaluation of cardiovascular diseases. CMR image acquisition is technically challenging, which in some circumstances is associated with artifacts, both general as well as sequence specific. Recognizing imaging artifacts, understanding their causes, and applying effective approaches for artifact mitigation are critical for successful CMR.
View Article and Find Full Text PDFThis study aims to explore the feasibility of applying the "Three-Low" technique (low injection rate, low iodine contrast volume, low radiation dose) in coronary CT angiography (CCTA). We prospectively collected data from 90 patients who underwent CCTA at our hospital between 2021 and 2024. The patients were randomly assigned to either the experimental group (n = 45) or the control group (n = 45).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul, 03080, Korea.
Ultrasound (US) is a widely used technique for liver disease but has limitations in distinguishing tumors. This study evaluates the clinical efficacy of fluctuational imaging (FLI), a new US method that detects the fluttering sign in liver tumors. We conducted a prospective exploratory study with 120 participants diagnosed with liver tumors through histopathology or standard imaging.
View Article and Find Full Text PDFAbdom Radiol (NY)
December 2024
Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
Objectives: Implementation of diffusion-weighted imaging (DWI) for abdominal imaging in children has challenges due to motion artifacts exacerbated by long acquisition times. We aimed to compare acquisition time and image quality between conventional DWI and multi-band (MB) DWI of the liver in children and young adults.
Methods: Clinical MRI exams from May 2023 to January 2024 were reviewed, including four DWI sequences: respiratory-triggered (RTr, clinical standard), free-breathing (FB), MB-DWI with shift factor 1 (MBsf1), and MB-DWI with shift factor 2 (MBsf2).
Adv Radiat Oncol
February 2025
Department of Radiation Oncology, University of Utah, Salt Lake City, Utah.
Purpose: To evaluate the image quality of an ultrafast cone-beam computed tomography (CBCT) system-Varian HyperSight.
Methods And Materials: In this evaluation, 5 studies were performed to assess the image quality of HyperSight CBCT. First, a HyperSight CBCT image quality evaluation was performed and compared with Siemens simulation-CT and Varian TrueBeam CBCT.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!