Temporal-action proposal generation (TAPG) is a well-known pre-processing of temporal-action localization and mainly affects localization performance on untrimmed videos. In recent years, there has been growing interest in proposal generation. Researchers have recently focused on anchor- and boundary-based methods for generating action proposals. The main purpose of this paper is to provide a comprehensive review of temporal-action proposal generation with network architectures and empirical results. The pre-processing step for input data is also discussed for network construction. The content of this paper was obtained from the research literature related to temporal-action proposal generation from 2012 to 2022 for performance evaluation and comparison. From several well-known databases, we used specific keywords to select 71 related studies according to their contributions and evaluation criteria. The contributions and methodologies are summarized and analyzed in a tabular form for each category. The result from state-of-the-art research was further analyzed to show its limitations and challenges for action proposal generation. TAPG performance in average recall ranges from 60% up to 78% in two TAPG benchmarks. In addition, several future potential research directions in this field are suggested based on the current limitations of the related studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394347 | PMC |
http://dx.doi.org/10.3390/jimaging8080207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!