In recent years, the number of publications on microhaplotypes has averaged more than a dozen papers annually. Many have contributed to a significant increase in the number of highly polymorphic microhaplotype loci. This increase allows microhaplotypes to be very informative in four main areas of forensic uses of DNA: individualization, ancestry inference, kinship analysis, and mixture deconvolution. The random match Probability (RMP) can be as small as 10−100 for a large panel of microhaplotypes. It is possible to measure the heterozygosity of an MH as the effective number of alleles (Ae). Ae > 7.5 exists for African populations and >4.5 exists for Native American populations for a smaller panel of two dozen selected microhaplotypes. Using STRUCTURE, at least 10 different ancestral clusters can be defined by microhaplotypes. The Ae for a locus is also identical to the Paternity Index (PI), the measure of how informative a locus will be in parentage testing. High Ae loci can also be useful in missing persons cases. Finally, high Ae microhaplotypes allow the near certainty of seeing multiple additional alleles in a mixture of two or more individuals in a DNA sample. In summary, a panel of higher Ae microhaplotypes can outperform the standard CODIS markers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329722 | PMC |
http://dx.doi.org/10.3390/genes13081322 | DOI Listing |
R Soc Open Sci
January 2025
Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, People's Republic of China.
DNA mixtures containing semen and vaginal fluid are common biological samples in forensic analysis. However, the analysis of semen-vaginal fluid mixtures remains challenging. In this study, to solve these problems, it is proposed to combine semen-specific CpG sites and closely related microhaplotype sites to form a new composite genetic marker (semen-specific methylation-microhaplotype).
View Article and Find Full Text PDFForensic Sci Int Genet
December 2024
BGI Forensic, Shenzhen 518083, China. Electronic address:
In this study, we developed and validated a novel microhaplotype (MH) panel, the FGID Microhaplotype Kit, which contains 232 loci and was specifically designed for forensic kinship analysis. The performance of the panel was evaluated through rigorous testing that included sensitivity, species specificity, inhibitor resistance, uniformity, stability, accuracy and mixture deconvolution. The results showed that the kit is capable of reliably detecting all loci with minimal DNA input.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Science Research Unit, USDA-ARS, St. Paul, MN, USA.
Plant genebanks contain large numbers of germplasm accessions that likely harbor useful alleles or genes absent in commercial plant breeding programs. Broadening the genetic base of commercial alfalfa germplasm with these valuable genetic variations can be achieved by screening the extensive genetic diversity in germplasm collections and enabling maximal recombination among selected genotypes. In this study, we assessed the genetic diversity and differentiation of germplasm pools selected in northern U.
View Article and Find Full Text PDFG3 (Bethesda)
December 2024
National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, 483 CBLS, 120 Flagg Road, Kingston, RI 02881, USA.
Amplicon panels using genotyping by sequencing methods are now common, but have focused on characterizing SNP markers. We investigate how microhaplotype (MH) discovery within a recently developed Pacific oyster (Magallana gigas) amplicon panel could increase the statistical power for relationship assignment. Trios (offspring and two parents) from three populations in a newly established breeding program were genotyped on a 592 locus panel.
View Article and Find Full Text PDFBMJ Open
November 2024
Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
Introduction: Malaria molecular surveillance has the potential to generate information on biological threats that compromise the effectiveness of antimalarial interventions. This study aims to streamline surveillance activities to inform the new strategic plan of the Mozambican National Malaria Control Programme (2023-2030) for malaria control and elimination.
Methods And Analyses: This prospective genomic surveillance study aims to generate genetic data to monitor diagnostic failures due to deletions and molecular markers of antimalarial drug resistance, to characterise transmission sources and to inform the implementation of new antimalarial approaches to be introduced in Mozambique (chemoprevention and child malaria vaccination).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!