Light from the environment is important for vision and regulating various biological processes. Providing supplemental lighting in the stall area could allow for individually targeted or group-level control of light. This study aimed to determine whether dairy cattle had preferences for short-term exposure to white (full-spectrum) light-emitting diode (LED) light or no LED light, yellow-green or white LED light, and blue or white LED light in the stall area. In total, 14 lactating cows were housed in a free-stall pen with unrestricted access to 28 stalls. LED light was controlled separately for each side of the stall platform. Two combinations of light were tested per week, and each week consisted of three adaptation days and four treatment days. Lying behaviour and video data were recorded continuously using leg-mounted pedometers and cameras, respectively. Preference was assessed by the amount of time spent lying and the number of bouts under each light treatment. No differences occurred between treatments within each week for daily lying time and number of bouts. Similarly, no differences occurred between treatments within each time period. Further controlled studies of long-term exposure to different LED wavelengths and intensities are required to determine potential benefits on metabolic processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331357 | PMC |
http://dx.doi.org/10.3390/ani12151894 | DOI Listing |
Natl Sci Rev
January 2025
Division of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University (JBNU), Jeonju 54896, South Korea.
Ever-increasing demand for efficient optoelectronic devices with a small-footprinted on-chip light emitting diode has driven their expansion in self-emissive displays, from micro-electronic displays to large video walls. InGaN nanowires, with features like high electron mobility, tunable emission wavelengths, durability under high current densities, compact size, self-emission, long lifespan, low-power consumption, fast response, and impressive brightness, are emerging as the choice of micro-light emitting diodes (µLEDs). However, challenges persist in achieving high crystal quality and lattice-matching heterostructures due to composition tuning and bandgap issues on substrates with differing crystal structures and high lattice mismatches.
View Article and Find Full Text PDFUnlabelled: Sensory filtering - prioritizing relevant stimuli while ignoring irrelevant ones - is crucial for animals to adapt and survive in complex environments. While this phenomenon has been primarily studied in organisms with complex nervous systems, it remains unclear whether simpler organisms also possess such capabilities. Here, we studied temporal information processing in , a freshwater planarian flatworm with a primitive nervous system.
View Article and Find Full Text PDFGenetic studies on the protist, provide a glimpse into the unexpectedly rich world of intracellular patterning that unfolds within the ciliate cell cortex. Ciliate pattern studies provide a useful counterpoint to animal models of pattern formation in that the unicellular model draws attention away from fields of cells (or nuclei) as the principal players in the metazoan pattern paradigm, focusing instead on fields of ciliated basal bodies serving as sources of positional information. In this study, we identify , a Polo kinase of , that serves as an important factor driving global, circumferential pattern.
View Article and Find Full Text PDFMol Breed
January 2025
Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China.
Unlabelled: Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
The photoacid-catalyzed synthesis of 2-deoxy glycosides is presented using stable glycosyl -[1-(-MeO-Phenyl)vinyl]benzoate (PMPVB) donors and employing the eosin Y and diphenyl disulfide (PhSSPh) catalytic system in the presence of blue LED lights. The remote activation of the alkene functionality under the photoacid catalysis followed by a 5-- cyclization led to the generation of oxocarbenium ions that were trapped to provide the glycosylated products in excellent yields and decent selectivities under mild conditions. This method is also useful for the photoacid-catalyzed synthesis of -methoxybenzyl-alkyl ethers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!