The authors describe the developmental process of intravenous anti-COVID-19 hyperimmune immunoglobulin from anti-SARS-CoV-2 neutralizing antibody-containing plasma. Furthermore, the authors investigated its safety and protective activity in animal models. The manufacturing process included standard ethanol fractionation, chromatographic purification steps and virus removal or inactivation. The authors produced pure and safe immunoglobulin for intravenous administration, with 98.1 ± 6.5 mg/ml protein content, of which 97.6 ± 0.7% was IgG. The concentration factor of SARS-CoV-2 neutralizing antibodies was 9.4 ± 1.4-times. Safety studies in animals showed no signs of acute/chronic toxicity or allergenic or thrombogenic properties. Intravenous anti-COVID-19 hyperimmune immunoglobulin protected immunosuppressed hamsters against SARS-Cov-2. The obtained results can allow the start of clinical trials to study the safety and efficacy in healthy adults.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9328115PMC
http://dx.doi.org/10.2217/imt-2022-0015DOI Listing

Publication Analysis

Top Keywords

plasma authors
8
intravenous anti-covid-19
8
anti-covid-19 hyperimmune
8
hyperimmune immunoglobulin
8
development characterization
4
characterization anti-sars-cov-2
4
intravenous
4
anti-sars-cov-2 intravenous
4
immunoglobulin
4
intravenous immunoglobulin
4

Similar Publications

Modulation of surface phonon polaritons in MoO via dynamic doping of SiC substrate.

Nanophotonics

January 2025

Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM), Universidad Politécnica de Madrid, Madrid, 28040 Spain.

Polar biaxial crystals with extreme anisotropy hold promise for the spatial control and the manipulation of polaritons, as they can undergo topological transitions. However, taking advantage of these unique properties for nanophotonic devices requires to find mechanisms to modulate dynamically the material response. Here, we present a study on the propagation of surface phonon polaritons (SPhPs) in a photonic architecture based on a thin layer of α-MoO deposited on a semiconducting 4H-SiC substrate, whose carrier density can be tuned through photoinduction.

View Article and Find Full Text PDF

Objective: This study analyzed the changes in blood glucose and lipid metabolism levels in children with central precocious puberty (CPP) and the correlation between CPP and obesity.

Methods: In total, 88 children with CPP aged 6-10 years who were admitted to our hospital between January 2023 and June 2024 (the CPP group), and 88 children without CPP in the same age group who received health check-ups (the non-CPP group) were retrospectively enrolled in this study. General data [gender, age, bone age, and body mass index (BMI)] were collected.

View Article and Find Full Text PDF

Dr. Charles Richard Drew, a pioneering figure in modern blood banking and 20th-century medicine, revolutionized blood donation and storage processes, fundamentally shaping the field as we know it today. His extensive work with blood and plasma, combined with an innovative approach to reducing contamination, laid the foundation for modern standards in safety and efficiency.

View Article and Find Full Text PDF

Tocotrienols, isomers of vitamin E, may provide an effective nutritional strategy to mitigate common cardiovascular risks such as dyslipidemia, inflammation, and oxidative stress in patients with chronic kidney disease (CKD). This double-blind, placebo-controlled, randomized clinical trial aimed to evaluate the effects of a tocotrienol-rich fraction (TRF) supplementation (300 mg/day) on oxidative stress and inflammatory markers, including transcription factors in nondialysis (ND) and hemodialysis (HD) CKD patients for three months. Interleukin-6, tumor necrosis factor- (IL-6 and TNF-), C-reactive protein (CRP), lipid peroxidation, biochemical parameters, and transcription factors such as NRF2 and NF-B mRNA expression were evaluated.

View Article and Find Full Text PDF

Pharmacogenetic and pharmacokinetic factors for dexmedetomidine-associated hemodynamic instability in pediatric patients.

Front Pharmacol

January 2025

Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.

Purpose: The incidence of hemodynamic instability associated with dexmedetomidine (DEX) sedation has been reported to exceed 50%, with substantial inter-individual variability in response. Genetic factors have been suggested to contribute significantly to such variation. The aim of this study was to identify the clinical, pharmacokinetic, and genetic factors associated with DEX-induced hemodynamic instability in pediatric anesthesia patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!