Ischemic stroke accounts for about 87% of all strokes, causing long-term disability in adults, and is the second leading cause of death worldwide. In search of new therapeutic modalities, the use of neuroprotective agents loaded in nanocarriers to be delivered by noninvasive means (i.e. via intranasal route) became a popular approach. In the current study, melatonin (MEL) was loaded in lipidic nanocapsules (LNCs) prepared using the phase inversion method, and characterized in terms of size, polydispersity, zeta potential, drug release, viscosity, storage stability, and permeation across sheep nasal mucosa. Moreover, MEL-LNCs were tested for efficacy in cerebral ischemia/reperfusion (I/R/) injury model through histopathological assessment, and analysis of oxidative stress markers, pro-inflammatory cytokines, and apoptotic markers. Results showed that LNCs exhibited particle size ranging from 18.26 to 109.8 nm, negative zeta potential, good storage stability, spherical morphology, and a burst release followed by a sustained release pattern. LNCs exhibited 10.35 folds higher permeation of MEL than the drug solution across sheep nasal mucosa. Post-ischemic intranasal administration of MEL-LNCs revealed lowering of oxidative stress manifested by a decrease in malondialdehyde levels, and elevation of glutathione and superoxide dismutase levels, lowering of the inflammatory markers tumor necrosis factor-α, NO, myeloperoxidase, and significant inhibition of Caspase-3 activity as an apoptotic marker. Western blot analysis delineated a recovery of protein expression Nrf-2 and HO-1 with downregulation in the parent inflammatory markers nuclear factor kappa B p65, inducible nitric oxide synthase, Bax, and Cytochrome C expressions, and upregulation of B-cell lymphoma-2 Bcl-2, hence promoting neuronal survival. This was supported by histological evidence, revealing significant restoration of hippocampal neurons. In light of the above, it can be concluded that MEL-LNCs could be a promising delivery system for nose to brain delivery for treatment of cerebral ischemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9341381PMC
http://dx.doi.org/10.1080/10717544.2022.2104405DOI Listing

Publication Analysis

Top Keywords

nose brain
8
brain delivery
8
lipidic nanocapsules
8
zeta potential
8
storage stability
8
sheep nasal
8
nasal mucosa
8
oxidative stress
8
lncs exhibited
8
inflammatory markers
8

Similar Publications

Intranasal drug administration offers a promising strategy for delivering combination antiretroviral therapy (cART) directly to the central nervous system to treat NeuroAIDS, leveraging the nose-to-brain route to bypass the blood-brain barrier. However, challenges such as enzymatic degradation in the nasal mucosa, low permeability, and mucociliary clearance within the nasal cavity must first be addressed to make this route feasible. To overcome these barriers, this study developed solid lipid nanoparticles (SLNs) with varying PEGylation levels (0 %, 5 %, 10 %, and 15 % w/w of PEGylated lipid), co-encapsulated with Elvitegravir (EVG) and Atazanavir (ATZ) as an integrase and protease inhibitor, respectively.

View Article and Find Full Text PDF

Introduction And Importance: Rhinocerebral mucormycosis (RM) is a rare and severe condition caused by filamentous fungi, characterized by infection of the nose, paranasal sinuses, and brain. It is the most common and fatal clinical form of mucormycosis, accounting for 50 % of reported cases. RM is seldom reported during the postpartum period.

View Article and Find Full Text PDF

Gastrointestinal lesions of eosinophilic granulomatosis with polyangiitis: a prediction model and clinical patterns.

Arthritis Res Ther

January 2025

Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China.

Objective: Severe gastrointestinal lesions are associated with a poor prognosis in eosinophilic granulomatosis with polyangiitis (EGPA). The goal of this study was to develop an effective predictive model for gastrointestinal lesions and to examine clinical patterns, associated factors, treatment, and outcomes of gastrointestinal lesions in EGPA.

Methods: We retrospectively enrolled 165 EGPA patients.

View Article and Find Full Text PDF

Background: Diagnostics for neurodegenerative diseases lack non-invasive approaches suitable for early-stage biochemical screening and routine examination of neuropathology. Biomarkers of neurodegenerative diseases pass through the brain-nose interface (BNI) and accumulate in nasal secretion. Sample collection from the brain-nose interface presents a compelling prospect as basis for a non-invasive molecular diagnosis of neuropathologies.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is considered to be one of the most devastating brain tumors with a shorter life expectancy. Several factors contribute to the dismal prognosis of GBM patients including the complicated nature of GBM, the ability of tumor cells to resist treatment, and the difficulty of delivering drugs to the brain because of barriers like the blood-brain barrier (BBB) and blood-tumor barrier (BTB). The unique challenges posed by the BBB in delivering therapeutic agents to the brain have led to the development of innovative nanotechnology-based approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!