Pressure ulcer (PU) and burn injury (BI) represent two types of wounds that require broad and difficult fields of treatments. Despite various advances made in recent years, these injuries have few solutions that allow recovery in shorter times and with greater effectiveness. All this negatively affects the patient's quality of life. Since ancient times, with the use of torpedoes (a kind of fish capable of producing electric discharges), it has been believed that the use of electricity could favor the repair processes of various kinds of wounds. Today, technological evolution has allowed the creation of more and more advanced techniques that can determine a better reparative response of the injured tissues. The radio electric asymmetric conveyer (REAC) technology is one of these and the reparative tissue optimization (TO-RPR) treatment represents the specific treatment for these lesions. The two cases presented in this article are intended to highlight how two serious injuries of a different nature, when treated with the REAC TO-RPR, have the same rapid qualitative and quantitative recovery path that continues even after the end of the treatment cycle. The stability and progression of the effects are typical of REAC treatments, and in this article, it is possible to appreciate the clinical evidence. These results together with others previously published open a new therapeutic possibility in the treatment of wounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303832PMC
http://dx.doi.org/10.7759/cureus.27060DOI Listing

Publication Analysis

Top Keywords

radio electric
8
electric asymmetric
8
asymmetric conveyer
8
conveyer reac
8
pressure ulcer
8
ulcer burn
8
burn injury
8
reac
4
reac reparative
4
reparative effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!