Novel and effective hemostats based on graphene oxide-polymer aerogels: In vitro and in vivo evaluation.

Biomater Adv

Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile. Electronic address:

Published: August 2022

In this study, graphene oxide (GO)-based aerogels cross-linked with chitosan (CS), gelatin (GEL), and polyvinyl alcohol (PVA) were characterized and their hemostatic efficiencies both in vitro and in vivo were investigated and compared to commercial materials (ChitoGauze®XR and Spongostan™). All aerogels exhibited highly porous structures and a negative surface charge density favorable to their interaction with blood cells. The in vitro studies showed that all aerogels coagulated >60 % of the blood contained in their structures after 240 s of the whole-blood clotting assay, the GO-CS aerogel being the one with the highest blood clotting. All aerogels showed high hemocompatibility, with hemolytic rates <5 %, indicating their use as biomaterials. Among them, the GO-GEL aerogel exhibited the lowest hemolytic activity, due possibly to its high GEL content compared to the GO amount. According to their blood clotting activity, aerogels did not promote coagulation through extrinsic and intrinsic pathways. However, their surfaces are suitable for accelerating hemostasis by promoting alternative routes. All aerogels adhered platelets and gathered RBCs on their surfaces, and in addition the GO-CS aerogel surface also promoted the formation of filamentous fibrin networks adhered on its structure. Furthermore, in vivo evaluations revealed that all aerogels significantly shortened the hemostatic times and reduced the blood loss amounts compared both to the Spongostan™ and ChitoGauze®XR commercial materials and to the gauze sponge (control group). The hemostatic performance in vitro and in vivo of these aerogels suggests that they could be used as hemostats for controlling profuse bleedings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2022.213007DOI Listing

Publication Analysis

Top Keywords

vitro vivo
8
aerogels
5
novel effective
4
effective hemostats
4
hemostats based
4
based graphene
4
graphene oxide-polymer
4
oxide-polymer aerogels
4
aerogels vitro
4
vivo evaluation
4

Similar Publications

Objective: Cystic fibrosis (CF) is a clinical entity defined by aberrant chloride (Cl) ion transport causing downstream effects on mucociliary clearance (MCC) in sinonasal epithelia. Inducible deficiencies in transepithelial Cl transport via CF transmembrane conductance regulator (CFTR) has been theorized to be a driving process in recalcitrant chronic rhinosinusitis (CRS) in patients without CF. We have previously identified that brief exposures to bacterial lipopolysaccharide (LPS) in mammalian cells induces an acquired dysfunction of CFTR in vitro and in vivo.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.

View Article and Find Full Text PDF

Semaphorin-4D signaling in recruiting dental stem cells for vascular stabilization.

Stem Cell Res Ther

January 2025

Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR.

Background: Achieving a stable vasculature is crucial for tissue regeneration. Endothelial cells initiate vascular morphogenesis, followed by mural cells that stabilize new vessels. This study investigated the in vivo effects of Sema4D-Plexin-B1 signaling on stem cells from human exfoliated deciduous teeth (SHED)-supported angiogenesis, focusing on its mechanism in PDGF-BB secretion.

View Article and Find Full Text PDF

CASC8 activates the pentose phosphate pathway to inhibit disulfidptosis in pancreatic ductal adenocarcinoma though the c-Myc-GLUT1 axis.

J Exp Clin Cancer Res

January 2025

Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.

Purpose: Glucose starvation induces the accumulation of disulfides and F-actin collapse in cells with high expression of SLC7A11, a phenomenon termed disulfidptosis. This study aimed to confirm the existence of disulfidptosis in pancreatic ductal adenocarcinoma (PDAC) and elucidate the role of Cancer Susceptibility 8 (CASC8) in this process.

Methods: The existence of disulfidptosis in PDAC was assessed using flow cytometry and F-actin staining.

View Article and Find Full Text PDF

Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!