Soil moisture (SM) is an important parameter in land surface processes and the global water cycle. Remote sensing technologies are widely used to produce global-scale SM products (e.g., European Space Agency’s Climate Change Initiative (ESA CCI)). However, the current spatial resolutions of such products are low (e.g., >3 km). In recent years, using auxiliary data to downscale the spatial resolutions of SM products has been a hot research topic in the remote sensing research area. A new method, which spatially downscalesan SM product to generate a daily SM dataset at a 16 m spatial resolution based on a spatiotemporal fusion model (STFM) and modified perpendicular drought index (MPDI), was proposed in this paper. (1) First, a daily surface reflectance dataset with a 16 m spatial resolution was produced based on an STFM. (2) Then, a spatial scale conversion factor (SSCF) dataset was obtained by an MPDI dataset, which was calculated based on the dataset fused in the first step. (3) Third, a downscaled daily SM product with a 16 m spatial resolution was generated by combining the SSCF dataset and the original SM product. Five cities in southern Hebei Province were selected as study areas. Two 16 m GF6 images and nine 500 m MOD09GA images were used as auxiliary data to downscale a timeseries 25 km CCI SM dataset for nine dates from May to June 2019. A total of 151 in situ SM observations collected on 1 May, 21 May, 1 June, and 11 June were used for verification. The results indicated that the downscaled SM data with a 16 m spatial resolution had higher correlation coefficients and lower RMSE values compared with the original CCI SM data. The correlation coefficients between the downscaled SM data and in situ data ranged from 0.45 to 0.67 versus 0.33 to 0.54 for the original CCI SM data; the RMSE values ranged from 0.023 to 0.031 cm3/cm3 versus 0.027 to 0.032 cm3/cm3 for the original CCI SM data. The findings described in this paper can ensure effective farmland management and other practical production applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319124PMC
http://dx.doi.org/10.3390/s22145366DOI Listing

Publication Analysis

Top Keywords

spatial resolution
20
original cci
12
cci data
12
soil moisture
8
spatial
8
spatiotemporal fusion
8
fusion model
8
modified perpendicular
8
perpendicular drought
8
remote sensing
8

Similar Publications

In this study, we explore an enhancement to the U-Net architecture by integrating SK-ResNeXt as the encoder for Land Cover Classification (LCC) tasks using Multispectral Imaging (MSI). SK-ResNeXt introduces cardinality and adaptive kernel sizes, allowing U-Net to better capture multi-scale features and adjust more effectively to variations in spatial resolution, thereby enhancing the model's ability to segment complex land cover types. We evaluate this approach using the Five-Billion-Pixels dataset, composed of 150 large-scale RGB-NIR images and over 5 billion labeled pixels across 24 categories.

View Article and Find Full Text PDF

It is well known that the sedimentary rock record is both incomplete and biased by spatially highly variable rates of sedimentation. Without absolute age constraints of sufficient resolution, the temporal correlation of spatially disjunct records is therefore problematic and uncertain, but these effects have rarely been analysed quantitatively using signal processing methods. Here we use a computational process model to illustrate and analyse how spatial and temporal geochemical records can be biased by the inherent, heterogenous processes of marine sedimentation and preservation.

View Article and Find Full Text PDF

A New Global Mangrove Height Map with a 12 meter spatial resolution.

Sci Data

January 2025

ETH Zürich, Institut für Umweltingenieurwissenschaften, Zürich, Switzerland.

Mangrove forests thrive along global tropical coasts, acting as a barrier that protects coastlines against storm surges and as nurseries for an entire food web. They are also known for their high carbon sequestration rates and soil carbon stocks. We introduce a new global mangrove canopy height map generated from TanDEM-X spaceborne elevation measurements collected during the 2011-2013 period with a 12-meter spatial resolution and an accuracy of 2.

View Article and Find Full Text PDF

Spatial protein expression technologies can map cellular content and organization by simultaneously quantifying the expression of >40 proteins at subcellular resolution within intact tissue sections and cell lines. However, necessary image segmentation to single cells is challenging and error prone, easily confounding the interpretation of cellular phenotypes and cell clusters. To address these limitations, we present STARLING, a probabilistic machine learning model designed to quantify cell populations from spatial protein expression data while accounting for segmentation errors.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common histologic type of RCC. However, the spatial and functional heterogeneity of immunosuppressive cells and the mechanisms by which their interactions promote immunosuppression in the ccRCC have not been thoroughly investigated.

Methods: To further investigate the cellular and regional heterogeneity of ccRCC, we analyzed single-cell and spatial transcriptome RNA sequencing data from four patients, which were obtained from samples from multiple regions, including the tumor core, tumor-normal interface, and distal normal tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!