Force-Displacement Analysis in Diaphragm-Embedded Fiber Bragg Grating Sensors.

Sensors (Basel)

Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória 29075-910, Espirito Santo, Brazil.

Published: July 2022

This paper presented the force and displacement analyses of a diaphragm-embedded fiber Bragg grating (FBG) sensor. In the first step, a numerical analysis (via finite element method) was performed considering linear elastic materials, where there is a linear variation on the strain in the optical fiber for both displacement and force (or pressure). In the second step, the experimental analysis was performed using two approaches: (i) controlling the displacement applied in the diaphragm-embedded FBG (while the force is also measured). (ii) Controlling the force applied in the sensor (also with the measurement of the displacement). Results showed reflected optical power variations and wavelength shift following the application of displacement and force. The sensitivities of both wavelength shift and optical power were different (and non-proportional) when displacement and force were compared. However, a higher correlation, determination coefficient (R) of 0.998, was obtained in the analysis of the wavelength shift as a function of the displacement, which indicated that the strain transmission in the optical fiber is directly related to the strain in the diaphragm, whereas the force has an indirect relation with the strain and depends on the material features. Then, the possibility of simultaneous estimation of force and displacement was investigated, where the linear relation of both parameters (displacement and force) with the wavelength shift and the optical power were obtained in a limited range of displacement and force. In this range, root mean squared errors of 0.37 N and 0.05 mm were obtained for force and displacement, respectively. In addition, the force variation with a step displacement input also shows the possibility of using the proposed FBG device for the characterization of the materials' viscoelastic features such as phase delay, creep, and stress relaxation, which can be employed for in situ characterization of different viscoelastic materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317192PMC
http://dx.doi.org/10.3390/s22145355DOI Listing

Publication Analysis

Top Keywords

displacement force
20
wavelength shift
16
force
12
displacement
12
force displacement
12
optical power
12
diaphragm-embedded fiber
8
fiber bragg
8
bragg grating
8
optical fiber
8

Similar Publications

: The objective of this paper is to introduce a method to measure the force or pressure over the carpal tunnel indirectly, using a new device to drive the pointer of a computer system. The measurements were compared with those obtained using an ergonomic mouse. Simultaneously, measurements of muscular stress on the digitorum extensor muscle were performed to correlate the applied force against muscle activity.

View Article and Find Full Text PDF

Nothronychus graffami was a large therizinosaur represented by a single well-preserved individual from the Turonian Tropic Shale of southern Utah. It is characterized by an enlarged abdomen, small tail, and an extensively pneumatized axial skeleton, and is frequently regarded as herbivorous. Given the overall tail reduction and the development of a wide fused synsacrum with widely spaced acetabulae, it is reconstructed with an anteriorly rotated femur and a displaced resting ground reaction force anterior to the center of mass.

View Article and Find Full Text PDF

The Protection of RC Columns by Bio-Inspired Honeycomb Column Thin-Walled Structure (BHTS) Under Impact Load.

Biomimetics (Basel)

December 2024

Heilongjiang Construction Investment Group Co., Ltd., Harbin 150046, China.

The bio-inspired honeycomb column thin-walled structure (BHTS) is inspired by the biological structure of beetle elytra and designed as a lightweight buffer interlayer to prevent damage to the reinforced concrete bridge pier (RCBP) under the overload impact from vehicle impact. According to the prototype structure of the pier, a batch of scale models with a scaling factor of 1:10 was produced. The BHTS buffer interlayer was installed on the reinforced concrete (RC) column specimen to carry out the steel ball impact test.

View Article and Find Full Text PDF

This study aims to investigate the impact of isolation piles on soil vibrations in the environment surrounding suburban railways. Initially, a comprehensive numerical model of the train was established to simulate the wheel-rail interaction forces, which were then applied to a three-dimensional coupled track-soil model. The accuracy of the model was validated through comparison with measured data.

View Article and Find Full Text PDF

Objective: Percutaneous Endoscopic Transforaminal Discectomy (PETD) is recognized as the leading surgical intervention for lumbar disc herniation (LDH). Moreover, Body Mass Index (BMI) has been established as an independent risk factor for disc reherniation post-PETD. Furthermore, there is a lack of studies investigating the biomechanical changes in the disc post-PETD in relation to diverse BMI levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!