The double random phase encoding (DRPE) system plays a significant role in encrypted systems. However, it is a linear system that leads to security holes in encrypted systems. To tackle this issue, this paper proposes a novel optical image encryption scheme that combines a chaotic S-box, DRPE, and an improved Arnold transformation (IAT). In particular, the encryption scheme designs a chaotic S-box to substitute an image. The chaotic S-box has the characteristics of high nonlinearity and low differential uniformity and is then introduced to enhance the security of the DRPE system. Chaotic S-boxes are resistant to algebraic attacks. An IAT is used to scramble an image encoded by the DRPE system. Meanwhile, three chaotic sequences are obtained by a nonlinear chaotic map in the proposed encryption scheme. One of them is used for XOR operation, and the other two chaotic sequences are explored to generate two random masks in the DRPE system. Simulation results and performance analysis show that the proposed encryption scheme is efficient and secure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317148PMC
http://dx.doi.org/10.3390/s22145325DOI Listing

Publication Analysis

Top Keywords

encryption scheme
20
chaotic s-box
16
drpe system
16
optical image
8
image encryption
8
chaotic
8
double random
8
random phase
8
phase encoding
8
encrypted systems
8

Similar Publications

This paper proposes a covert chaotic encryption (CCE) scheme based on compressive sensing (CS). The chaotic sequences used are generated by a six-dimensional hyper-chaotic D-system, where the sequence is utilized for a chaotic index sparse block (CISB), the sequence is used for generating the CS measurement matrix effectively, the , , and sequences are employed for variable-parameter iterative Arnold transformations, and the sequence is used for dual-random least significant bit (LSB) scrambling and embedding. The combination of these technologies enabled the scheme to achieve multi-domain, multi-dimensional, ultra-high-security encryption for multimedia image data.

View Article and Find Full Text PDF

Background And Objective: Cloud-based Deep Learning as a Service (DLaaS) has transformed biomedicine by enabling healthcare systems to harness the power of deep learning for biomedical data analysis. However, privacy concerns emerge when sensitive user data must be transmitted to untrusted cloud servers. Existing privacy-preserving solutions are hindered by significant latency issues, stemming from the computational complexity of inner product operations in convolutional layers and the high communication costs of evaluating nonlinear activation functions.

View Article and Find Full Text PDF

Conventional personal health record (PHR) management systems are centralized, making them vulnerable to privacy breaches and single points of failure. Despite progress in standardizing healthcare data with the FHIR format, hospitals often lack efficient platforms for transferring PHRs, leading to redundant tests and delayed treatments. To address these challenges, we propose a decentralized PHR management system leveraging Personal Data Stores (PDS) and Decentralized Identifiers (DIDs) in line with the Web 3.

View Article and Find Full Text PDF

Within the framework of 6G networks, the rapid proliferation of Internet of Things (IoT) devices, coupled with their decentralized and heterogeneous characteristics, presents substantial security challenges. Conventional centralized systems face significant challenges in effectively managing the diverse range of IoT devices, and they are inadequate in addressing the requirements for reduced latency and the efficient processing and analysis of large-scale data. To tackle these challenges, this paper introduces a zero-trust access control framework that integrates blockchain technology with inner-product encryption.

View Article and Find Full Text PDF

Cryptanalysis of an Image Encryption Algorithm Using DNA Coding and Chaos.

Entropy (Basel)

January 2025

Electrical Engineering College, Heilongjiang University, Harbin 150080, China.

In recent years, many chaotic image encryption algorithms have been cracked by chosen plaintext attack. Therefore, the method of associating the key with the plaintext to resist the cryptanalysis has received extensive attention from designers. This paper proposes a new method of cryptanalysis for image encryption algorithms with a key associated with plaintext.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!