Automatically delineating the deep and superficial aponeurosis of the skeletal muscles from ultrasound images is important in many aspects of the clinical routine. In particular, finding muscle parameters, such as thickness, fascicle length or pennation angle, is a time-consuming clinical task requiring both human labour and specialised knowledge. In this study, a multi-step solution for automating these tasks is presented. A process to effortlessly extract the aponeurosis for automatically measuring the muscle thickness has been introduced as a first step. This process consists mainly of three parts. In the first part, the Attention UNet has been incorporated to automatically delineate the boundaries of the studied muscles. Afterwards, a specialised post-processing algorithm was utilised to improve (and correct) the segmentation results. Lastly, the calculation of the muscle thickness was performed. The proposed method has achieved similar to a human-level performance. In particular, the overall discrepancy between the automatic and the manual muscle thickness measurements was equal to 0.4 mm, a significant result that demonstrates the feasibility of automating this task. In the second step of the proposed methodology, the fascicle's length and pennation angle are extracted through an unsupervised pipeline. Initially, filtering is applied to the ultrasound images to further distinguish the tissues from the other muscle structures. Later, the well-known K-Means algorithm is used to isolate them successfully. As the last step, the dominant angle of the segmented muscle tissues is reported and compared with manual measurements. The proposed pipeline is showing very promising results in the evaluated dataset. Specifically, in the calculation of the pennation angle, the overall discrepancy between the automatic and the manual measurements was less than 2.22° (degrees), once more comparable with the human-level performance. Finally, regarding the fascicle length measurements, the results were divided based on the muscle properties. In the muscles where a large portion (or all) of the fascicles are located between the upper and lower aponeuroses, the proposed pipeline exhibits superb performance; otherwise, overall accuracy deteriorates due to errors caused by the trigonometric approximations needed for the length calculation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324543 | PMC |
http://dx.doi.org/10.3390/s22145230 | DOI Listing |
Clin Nutr ESPEN
December 2024
Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara, Turkey; Hacettepe University Faculty of Medicine, Department of Neurology, Neurology Intensive Care Unit, Stroke Unit, Ankara. Electronic address:
Background: Premorbid sarcopenia, osteoporosis, and obesity are epiphenomena that affect survival and functional outcomes in patients with acute ischemic stroke. The effects of preexisting sarcopenia and/or osteopenia on long-term outcome after ischemic stroke were herein prospectively studied.
Methods: Dual-energy x-ray absorptiometry (DeXA), bio-impedance analysis (BIA) and muscle ultrasonography (US) data were prospectively collected within the first 72 hours in 297 consecutive acute ischemic stroke patients (45.
J Physiol Anthropol
December 2024
Faculty of Sport Management, Department of Sport Management, Shobi University, 1-1-1, Toyoda-cho, Kawagoe, Saitama, 350-1110, Japan.
Background: Muscle architecture is closely related to muscle function. Increased knowledge of growth changes in muscle architecture will provide insights into the development of human movements and sports performance during the growth period. However, it is unclear how the muscle architecture of the medial gastrocnemius (MG) grows.
View Article and Find Full Text PDFSci Data
December 2024
The University of North Carolina at Chapel Hill and North Carolina State University, Joint Department of Biomedical Engineering, Raleigh, 27695, USA.
The role of the human ankle joint in activities of daily living, including walking, maintaining balance, and participating in sports, is of paramount importance. Ankle joint dorsiflexion and plantarflexion functionalities mainly account for ground clearance and propulsion power generation during locomotion tasks, where those functionalities are driven by the contraction of ankle joint skeleton muscles. Studies of corresponding muscle contractility during ankle dynamic functions will facilitate us to better understand the joint torque/power generation mechanism, better diagnose potential muscular disorders on the ankle joint, or better develop wearable assistive/rehabilitative robotic devices that assist in community ambulation.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
December 2024
Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium.
This study investigates the effects of a five-week training program on the medial gastrocnemius muscle, comparing two approaches: blood flow restriction (BFR) training and normobaric hyperoxia (oxygen supplementation). It evaluates three strengthening modalities (dynamic, isometric, and the 3/7 method) analyzing their impact on maximal voluntary contraction (MVC), muscle architecture, and perceived exertion. A total of 36 young healthy participants (21 females, 15 males) were randomized into six subgroups (n = 6 each) based on the type of contraction and oxygen condition.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
December 2024
Faculty of Rehabilitation Sciences, Nishi Kyushu University, Kanzaki-shi 842-0015, Saga, Japan.
: the purpose of this study was to determine the contributions of mechanical, neural, morphological, and muscle quality factors on individual differences in the maximal ankle dorsiflexion range of motion (ROM). : A sample of 41 university students performed passive-dorsiflexion and morphological measurements. In the passive-dorsiflexion measurement, while the ankle was passively dorsiflexed, maximal dorsiflexion ROM was measured in addition to passive torque at a given angle and muscle-tendon junction (MTJ) displacement during the last 13° as mechanical factors, and stretch tolerance and muscle activation were measured as neural factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!