To address the problem of expensive computation in traditional two-dimensional (2D) direction of arrival (DOA) estimation, in this paper, we propose a 2D DOA estimation method based on a reduced dimension and root-finding MUSIC algorithm for nested planar arrays (NPAs). Specifically, the algorithm proposed in this paper transforms the problem based on 2D spectral peak search into two one-dimensional estimation problems by reducing the dimension, and then transforms the one-dimensional estimation problem into a problem of polynomial root finding. Finally the parameters are paired to realize the 2D DOA estimation. The proposed algorithm not only performs two root finding operations directly according to the 2D spectral function transformation, avoiding the performance degradation caused by intermediate operations, but can also fully exploit the enlarged array aperture offered by NPAs with reduced computational complexity and no need for virtualization. The superiorities of the proposed algorithm in terms of estimation accuracy and complexity are verified by simulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325100 | PMC |
http://dx.doi.org/10.3390/s22145220 | DOI Listing |
Sensors (Basel)
January 2025
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Frequency diversity array-multiple-input multiple-output (FDA-MIMO) radar realizes an angle- and range-dependent system model by adopting a slight frequency offset between adjacent transmitter sensors, thereby enabling potential target localization. This paper presents FDA-MIMO radar-based rapid target localization via the reduction dimension root reconstructed multiple signal classification (RDRR-MUSIC) algorithm. Firstly, we reconstruct the two-dimensional (2D)-MUSIC spatial spectrum function using the reconstructed steering vector, which involves no coupling of direction of arrival (DOA) and range.
View Article and Find Full Text PDFSci Rep
December 2024
School of Automation, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Chongqing, 400065, Chongqing, China.
In this paper, a direction of arrival (DOA) estimation algorithm for non-circular signal by a large-spacing uniform array with an auxiliary element has been presented. The auxiliary element is placed away from the last element of the large-spacing uniform array. The spacing between arbitrary two elements of the whole array is not limited by the half-wavelength of the signal.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Computer and Electrical Engineering, Mid Sweden University, 851 70 Sundsvall, Sweden.
Traditional spherical sector microphone arrays using omnidirectional microphones face limitations in modal strength and spatial resolution, especially within spherical sector configurations. This study aims to enhance array performance by developing a spherical sector array employing first-order cardioid microphones. A model based on spherical sector harmonic (SSH) functions is introduced to extend the benefits of spherical harmonics to sector arrays.
View Article and Find Full Text PDFJ Acoust Soc Am
December 2024
Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0238, USA.
For direction-of-arrival (DOA) estimation in the low-frequency range, we improve spatial resolution using generalized frequency-sum (gFS) beamforming with the Qth order frequency-sum autoproduct. The order Q does not exceed the maximum value, determined by the criteria that the sum of frequencies used to create the autoproduct must be less than the array's spatial Nyquist frequency. Unlike other high-resolution beamformers, gFS maintains stable performance even with a single snapshot and is unaffected by the coherence of steering vectors.
View Article and Find Full Text PDFNanophotonics
November 2024
Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!