Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Positron emission tomography/computed tomography (PET/CT) plays a vital role in diagnosing tumors. However, PET/CT imaging relies primarily on manual interpretation and labeling by medical professionals. An enormous workload will affect the training samples' construction for deep learning. The labeling of tumor lesions in PET/CT images involves the intersection of computer graphics and medicine, such as registration, a fusion of medical images, and labeling of lesions. This paper extends the linear interpolation, enhances it in a specific area of the PET image, and uses the outer frame scaling of the PET/CT image and the least-squares residual affine method. The PET and CT images are subjected to wavelet transformation and then synthesized in proportion to form a PET/CT fusion image. According to the absorption of 18F-FDG (fluoro deoxy glucose) SUV in the PET image, the professionals randomly select a point in the focus area in the fusion image, and the system will automatically select the seed point of the focus area to delineate the tumor focus with the regional growth method. Finally, the focus delineated on the PET and CT fusion images is automatically mapped to CT images in the form of polygons, and rectangular segmentation and labeling are formed. This study took the actual PET/CT of patients with lymphatic cancer as an example. The semiautomatic labeling of the system and the manual labeling of imaging specialists were compared and verified. The recognition rate was 93.35%, and the misjudgment rate was 6.52%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320307 | PMC |
http://dx.doi.org/10.3390/s22145171 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!