In the current scenario of anthropogenic climate change, carbon credit security is becoming increasingly important worldwide. Topsoil is the terrestrial ecosystem component with the largest carbon sequestration capacity. Since soil organic matter (SOM), which is mostly composed of organic carbon, and can be affected by rainfall, cultivation, and pollutant inflow, predicting SOM content through regular monitoring is necessary to secure a stable carbon sink. In addition, topsoil in the Republic of Korea is vulnerable to erosion due to climate, topography, and natural and anthropogenic causes, which is also a serious issue worldwide. To mitigate topsoil erosion, establish an efficient topsoil management system, and maximize topsoil utilization, it is necessary to construct a database or gather data for the construction of a database of topsoil environmental factors and topsoil composition. Spectroscopic techniques have been used in recent studies to rapidly measure topsoil composition. In this study, we investigated the spectral characteristics of the topsoil from four major rivers in the Republic of Korea and developed a machine learning-based SOM content prediction model using spectroscopic techniques. A total of 138 topsoil samples were collected from the waterfront area and drinking water protection zone of each river. The reflection spectrum was measured under the condition of an exposure time of 136 ms using a spectroradiometer (Fieldspec4, ASD Inc., Alpharetta, GA, USA). The reflection spectrum was measured three times in wavelengths ranging from 350 to 2500 nm. To predict the SOM content, partial least squares regression and support vector regression were used. The performance of each model was evaluated through the coefficient of determination (R) and root mean square error. The result of the SOM content prediction model for the total topsoil was R = 0.706. Our findings identified the important wavelength of SOM in topsoil using spectroscopic technology and confirmed the predictability of the SOM content. These results could be used for the construction of a national topsoil database.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317811 | PMC |
http://dx.doi.org/10.3390/s22145129 | DOI Listing |
Plant Cell Environ
January 2025
College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China.
Long-term positioning experiments have demonstrated significant benefits in agricultural production and environmental protection. Faba bean-wheat intercropping with nitrogen fertiliser can effectively mitigate the occurrence of faba bean wilt disease. Identifying the optimal nitrogen application rate is essential for enhancing the disease control efficacy of intercropping.
View Article and Find Full Text PDFWater Res
January 2025
Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, Wuhan 430078, China.
The contamination of groundwater with geogenic ammonium (NH) across various geological backgrounds has garnered significant attention, particularly in coastal aquifer systems. However, there remains a gap in our understanding of the mechanisms governing the spatial variability of NH in coastal groundwater at a macroscopic scale. In this study, we collected the sediment samples from two boreholes corresponding to high-NH-N and low-NH-N groundwater.
View Article and Find Full Text PDFPeerJ
January 2025
Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China.
Grazing can alter the physicochemical properties of soil and quickly influence the composition of microbial communities. However, the effects of grazing intensity on fungal community composition in different soil depth remain unclear. On the Inner Mongolia Plateau, we studied the effects of grazing intensity treatments including no grazing (NG), light grazing (LG), moderate grazing (MG), heavy grazing (HG), and over grazing (OG) on the physicochemical properties and fungal community composition of surface (0-20 cm) and subsurface (20-40 cm) soil layers.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str, Krakow, 31-425, Poland.
Tree species through aboveground biomass and roots are a key factors influencing the quality and quantity of soil organic matter. Our study aimed to determine the stability of soil organic matter in Luvisols under the influence of five different tree species. The study areas were located 25 km north of Krakow, in southern Poland.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Agronomy College, Jinlin Agricultural University, Changchun 130118, China.
Straw return plays a vital role in crop yield and sustainable agriculture. Extensive research has focused on the potential to enhance soil fertility and crop yield through straw return. However, the potential impacts of straw return on saline-sodic soils have been relatively neglected due to the unfavorable characteristics of saline-sodic soils, such as high salinity, poor structure, and low nutrient contents, which are not conducive to crop growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!