Inappropriate disposal of leaching residues from the lead-zinc tailings recovery process may result in environmental pollution. Its recycling and reuse remain a prevalent topic in environmental science and technology. It was roasted to prepare leaching residues-based materials (TLRS) in this work, and the TLRS were creatively used as the catalyst to active sodium persulfate (PS) to degrade organic pollutants. Degradation of tetracycline using the TLRS-PS system was evaluated, and the treating parameters were optimized. Roasting resulted in the exposure of active sites on TLRS surface, in which transition metals can donate electrons to PS to form SO. SO can further react with OH to form ·OH. Formation of these radicals was confirmed by both quenching experiments and EPR analysis. Under optimized conditions, 85% of the TC can be degraded in 3.0 h, and ~50% of degraded TC was mineralized to CO and HO. The performance of TLRS barely changed after four reuses, suggesting the chemical stability of TLRS. The presence of dissolved substance in the water matrix could weaken the performance of the TLRS-PS system. A mechanism of TC degradation was proposed based on the experimental results and literature. These preliminary results provide us new insight on the reuse of lead-zinc flotation tailings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316694 | PMC |
http://dx.doi.org/10.3390/polym14142959 | DOI Listing |
Molecules
December 2024
Faculty of Non-Ferrous Metals, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.
Gallium, a critical and strategic material for advanced technologies, is anomalously enriched in certain coal deposits and coal by-products. Recovering gallium from solid residues generated during coal production and utilization can yield economic benefits and positive environmental gains through more efficient waste processing. This systematic literature review focuses on gallium concentrations in coal and its combustion or gasification by-products, modes of occurrence, gallium-hosting phases, and hydrometallurgical recovery methods, including pretreatment procedures that facilitate metal release from inert aluminosilicate minerals.
View Article and Find Full Text PDFEnviron Health Insights
January 2025
Department of Environment and Climate Change, Ethiopian Civil Service University, Addis Ababa, Ethiopia.
Background: The decline in wheat output in Ethiopia is widely attributed to pests, which has led to a rise in the usage of pesticides to boost productivity. The degree of pesticides sorption and degradation which influence the likelihood of environmental contamination from pesticides seeping into water bodies from soil has not yet been published for Ethiopian soils. The study aimed at to quantify the levels of pesticide residues, assess glyphosate's adsorption capabilities and degradation rate in the soils.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China. Electronic address:
Coal gasification slag (CGS) is a challenging solid waste due to the presence of highly toxic heavy metals, which pose significant risks to environmental and human health. CGS cannot be freely reused or disposed of, creating considerable obstacles to solid waste resource utilization. This study presents a novel method for heavy metal removal from CGS through a separation-oxidation-acid washing (SOA) process, which effectively recycles residual carbon (RC) while minimizing the risk of heavy metal leakage.
View Article and Find Full Text PDFFood Chem
December 2024
Key Laboratory of Product Packaging and Logistics, College of Packing and Engineering, Jinan University, Zhuhai 519070, China. Electronic address:
2,4-di-tert-butylphenol (2,4-DTBP) is an additive used in food packaging. The inhibitory effects of 2,4-DTBP on pancreatic lipase (PL) were investigated in this study. Kinetic analysis indicated that 2,4-DTBP competitively and reversibly inhibited PL activity.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Resource Recirculation Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea. Electronic address:
Globally, various policies are being implemented to phase out plastic, and South Korea has set targets to reduce waste and increase recycling rates by 2030. Concerns about managing microplastic pollution are growing. Most advanced research has primarily focused on aquatic ecosystems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!