The interfacial modification of basalt-fiber-reinforced polymer (BFRP) composites is an essential research field and many techniques have been developed to improve the adhesion between basalt fiber (BF) and the matrix. However, most studies were based on the matrixes of general plastics and epoxy resins. In this work, five different chain structures of thermoplastic sizing agents were used to improve the interfacial properties of unidirectional BF-reinforced soluble and high-temperature-resistant poly(phthalazinone ether nitrile ketone) (BF/PPENK) composites. DMA results showed that the poly(ether nitrile) (PEN)-sized BF/PPENK (BF-PEN/PPENK) composite exhibited the optimal interfacial performance, with a storage modulus (') and glass transition temperature () up to 50 GPa and 288 °C, respectively. Moreover, the tensile strength, compressive strength, flexural strength, and interlaminar shear strength of the BF-PEN/PPENK composite reached 778 MPa, 600 MPa, 1115 MPa and 57 MPa, respectively, and increased by 42%, 49%, 20% and 30% compared with the desized BF/PPENK composite. This study provides some suggestions for the design of sizing agents to modify the interface of BF and high-performance thermoplastic resin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315541PMC
http://dx.doi.org/10.3390/polym14142947DOI Listing

Publication Analysis

Top Keywords

sizing agents
12
ether nitrile
8
nitrile ketone
8
thermoplastic sizing
8
bf-pen/ppenk composite
8
highly enhancing
4
interfacial
4
enhancing interfacial
4
interfacial mechanical
4
mechanical properties
4

Similar Publications

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

Nebulized Hybrid Nanoarchaeosomes: Anti-Inflammatory Activity, Anti-Microbial Activity and Cytotoxicity on A549 Cells.

Int J Mol Sci

January 2025

Centro de Investigación y Desarrollo de Nanomedicinas (CIDeN), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876 Bernal, Argentina.

The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate ( extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.

View Article and Find Full Text PDF

Effect of Surface Finishing and Nitriding on the Wetting Properties of Hot Forging Tools.

Materials (Basel)

January 2025

Faculty of Mechanical Engineering, Institute of Mechanical Technology, Poznan University of Technology, Piotrowo 3, 60-695 Poznan, Poland.

Lubrication is a critical aspect of the metal forming process and it is strongly influenced by the surface texture of the tool-forming surfaces. This study is focused on determining the effect of surface finish and heat treatment on wettability involving commonly used lubrication agents. Three different finishing states are evaluated (as-ground, as-polished and as-nitrided).

View Article and Find Full Text PDF

Rice Starch Chemistry, Functional Properties, and Industrial Applications: A Review.

Polymers (Basel)

January 2025

Department of Mechanical, Chemical, and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, CA, Italy.

Starch is among the most abundant natural compounds in nature after cellulose. Studies have shown that the structure and functions of starch differ extensively across and among botanical types, isolation procedures, and climate factors, resulting in starch with significant variations in its chemical, physical, morphological, thermal, and functional characteristics. To enhance its beneficial properties and address inherent limitations, starch is modified through various techniques, resulting in significant alterations to its chemical and physical characteristics.

View Article and Find Full Text PDF

Bead-foaming technology effectively addresses production cycles, polymerization control, and cellular structure defects in conventional bulk foaming, especially in high-performance PMI foams. In this work, highly expandable PMI beads were synthesized based on the aqueous suspension polymerization of methacrylic acid-methacrylonitrile-tert-butyl methacrylate (MAA-MAN-tBMA) copolymers. The suspension polymerization was stabilized by reducing the solubility of MAA by the salting-out effect and replacing formamide (a common PMI foaming agent) with tBMA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!