Many researchers and scientists have contributed significantly to provide structural and molecular characterizations of biochemical interactions using microscopic techniques in the recent decade, as these biochemical interactions play a crucial role in the production of diverse biomaterials and the organization of biological systems. The properties, activities, and functionalities of the biomaterials and biological systems need to be identified and modified for different purposes in both the material and life sciences. The present study aimed to review the advantages and disadvantages of three main branches of microscopy techniques (optical microscopy, electron microscopy, and scanning probe microscopy) developed for the characterization of these interactions. First, we explain the basic concepts of microscopy and then the breadth of their applicability to different fields of research. This work could be useful for future research works on biochemical self-assembly, biochemical aggregation and localization, biological functionalities, cell viability, live-cell imaging, material stability, and membrane permeability, among others. This understanding is of high importance in rapid, inexpensive, and accurate analysis of biochemical interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318543 | PMC |
http://dx.doi.org/10.3390/polym14142853 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!