Shear jamming, a relatively new type of phase transition from discontinuous shear thickening into a solid-like state driven by shear in dense suspensions, has been shown to originate from frictional interactions between particles. However, not all dense suspensions shear jam. Dense fumed silica colloidal systems have wide applications in the industry of smart materials from body armor to dynamic dampers due to extremely low bulk density and high colloid stability. In this paper, we provide new evidence of shear jamming in polypropylene glycol/fumed silica suspensions using optical in situ speed recording during low-velocity impact and explain how it contributes to impact absorption. Flow rheology confirmed the presence of discontinuous shear thickening at all studied concentrations. Calculations of the flow during impact reveal that front propagation speed is 3-5 times higher than the speed of the impactor rod, which rules out jamming by densification, showing that the cause of the drastic impact absorption is the shear jamming. The main impact absorption begins when the jamming front reaches the boundary, creating a solid-like plug under the rod that confronts its movement. These results provide important insights into the impact absorption mechanism in fumed silica suspensions with a focus on shear jamming.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322945 | PMC |
http://dx.doi.org/10.3390/polym14142768 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Weldon School of Biomedical Engineering, Purdue University, West Lafayette 47907-2050, Indiana, United States.
Granular hydrogels are injectable and inherently porous biomaterials assembled through the packing of microparticles. These particles typically have a symmetric and spherical shape. However, recent studies have shown that asymmetric particles with high aspect ratios, such as fibers and rods, can significantly improve the mechanics, structure, and cell-guidance ability of granular hydrogels.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.
Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
Colloidal properties of nanoparticles are intricately linked to their morphology. Traditionally, achieving high-concentration dispersions of two-dimensional (2D) nanosheets has proven challenging as they tend to agglomerate or re-stack under increased surface contact and Van der Waals attraction. Here, we unveil an excluded volume effect enabled by 2D morphology, which can be coupled with electrostatic repulsion to synthesize high-concentration aqueous graphene dispersions.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom.
To form nonspherical emulsion droplets, the interfacial tension driving droplet sphericity must be overcome. This can be achieved through interfacial particle jamming; however, careful control of particle coverage is required. In this work, we present a scalable novel batch process to form nonspherical particle-stabilized emulsions.
View Article and Find Full Text PDFLangmuir
December 2024
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
Concentrated suspensions of Brownian and non-Brownian particles display distinctive rheological behavior highly dependent on shear rate and shear stress. Cornstarch suspensions, composed of starch particles from corn plants, served as a model for concentrated non-Brownian suspensions, demonstrating discontinuous shear thickening (DST) and dynamic shear jamming (SJ). However, starch particles from other plant sources have not yet been investigated, despite their different sizes and shapes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!