Osteoporotic fractures are a very common bone disease that is difficult to completely cure. A large number of people worldwide suffer from pain caused by osteoporotic fractures every year, which can even cause disability and death. The compromised skeletal strength, lower density, trabecular microstructure, and bone-forming ability caused by osteoporotic fractures make them difficult to treat relative to normal fractures. An ideal scheme for osteoporotic fractures is to select internal fixation materials with matched mechanical and biological properties and carry anti-osteoporosis drugs on the plant to achieve bio-fixation and improve the condition of osteoporosis simultaneously. We designed a Mg-based MAO-MT-PLGA drug/ion delivery system (DDS) compatible with bone-like mechanical properties, degradation properties, and drug therapy. In this research, we evaluated the degradation behavior of Mg-based MAO-MT-PLGA DDS using immersion tests and electrochemical tests aided by SEM, EDS, XPS, XRD, and FT-IR. The DDS showed better corrosion resistance over Mg alloy and could release more Mg2+ due to the degradation of PLGA. According to cell viability and cell adhesion, the DDS showed better osteogenic characteristics over control group I (Mg alloy) and control group II (Mg-based MAO alloy), especially in the cells co-cultured with the leaching solution for 72 h, in which the DDS group increased to about 15% cell viability compared with group I (p < 0.05). The mRNA relative expressions, including ALP, collagen I, OCN, OPG, and Runx-2, as well as extracellular matrix calcium deposits of the DDS, are 1.5~2 times over control group I and control group II (p < 0.05), demonstrating a better ability to promote bone formation and inhibit bone resorption. After the DDS was implanted into the castrated rat model for one month, the trabeculae in the treatment group were significantly denser and stronger than those in the control group, with a difference of about 1.5 times in bone volume fraction, bone density, and the number of trabeculae, as well as the magnesium content in the bone tissue (p < 0.05). The above results demonstrated that the Mg-based MAO-MT-PLGA drug/ion delivery system is a potential treatment for osteoporotic fractures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320112 | PMC |
http://dx.doi.org/10.3390/pharmaceutics14071481 | DOI Listing |
Am J Transl Res
December 2024
Department of Orthopaedics, Liyang Hospital of Chinese Medicine Changzhou 213300, Jiangsu, China.
Objective: To investigate the alterations in the Geriatric Nutritional Risk Index (GNRI) and bone morphogenetic protein 2 (BMP-2) levels and identify associated factors in older adults with delayed union of osteoporotic thoracolumbar spine fractures.
Methods: From June 2021 to June 2023, 139 elderly patients with osteoporotic thoracolumbar spine fractures were selected and divided into a delayed group and a normal group according to the fracture healing status at 6 months postoperatively. GNRI and BMP-2 levels were assessed in both cohorts.
Arch Osteoporos
January 2025
Department of Orthopaedics and Traumatology, Queen Mary Hospital The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China.
Unlabelled: Grip strength measurement, as a surrogate of sarcopenia diagnosis, effectively predicts secondary fracture risk in distal radius fracture patients. This simple tool enhances clinical practice by identifying high-risk patients for targeted interventions, potentially preventing or reversing functional decline and recurrent fractures.
Purpose: To evaluate grip strength and hand muscle cross-sectional area as predictors of secondary fracture risk in patients with a history of distal radius fracture (DRF), serving as surrogates of the diagnosis of sarcopenia.
Ann Endocrinol (Paris)
January 2025
Université Paris-Saclay, Inserm, Endocrine Physiology and Physiopathology, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction and Centre de Référence des Maladies Rares de l'Hypophyse HYPO, F-94270 Le Kremlin-Bicêtre, France. Electronic address:
Primary hyperparathyroidism is rare in children. A germline mutation is identified in half of all children with primary hyperparathyroidism (70% of newborns and infants, and 40% of children and adolescents). The clinical manifestations of primary hyperparathyroidism in children are highly variable (often absent in newborns, rather severe and symptomatic in children and adolescents) and depend on the genetic cause, as well as the severity, rapidity of onset and duration of hypercalcemia.
View Article and Find Full Text PDFEndocrinol Metab (Seoul)
January 2025
Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea.
Background: The associations between thyroid cancer and skeletal outcomes have not been thoroughly investigated. We aimed to investigate the risk of osteoporotic fractures in patients with thyroid cancer compared to that in a matched control group.
Methods: This retrospective cohort study included 2,514 patients with thyroid cancer and 75,420 matched controls from the Korean National Health Insurance Service-National Sample Cohort (NHIS-NSC, 2006-2019).
N Engl J Med
January 2025
From the Department of Medicine, University of Auckland, Auckland, New Zealand (M.J.B., Z.N., A.M., C.G., V.P., B.M., A.G., I.R.R., G.G., A.H.); the Department of Psychology, Stanford University, Stanford, CA (C.G.); and the Department of Radiology, Starship Hospital, Auckland, New Zealand (S.B.).
Background: Zoledronate prevents fractures in older women when administered every 12 to 18 months, but its effects on bone density and bone turnover persist beyond 5 years. Whether infrequent zoledronate administration would prevent vertebral fractures in early postmenopausal women is unknown.
Methods: We conducted a 10-year, prospective, double-blind, randomized, placebo-controlled trial involving early postmenopausal women (50 to 60 years of age) with bone mineral density T scores lower than 0 and higher than -2.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!