Levosimendan is used in severe chronic cardiac insufficiency, also within the peri-operative setting. Real-life pharmacokinetic data in surgical patients is lacking, making therapeutic drug monitoring (TDM) of levosimendan, its pharmacologically active metabolite OR-1896, and its intermediate OR-1855 important. A simultaneous highly sensitive quantification of levosimendan and its metabolites in small-volume samples has not yet been described. Here, levosimendan (LLOQ 0.450 nM), OR-1896, and OR-1855 (LLOQ both 1.0 nM) were successfully quantified by LC-ESI-MS/MS after liquid-liquid extraction in 300 µL of blood. A short C8 column under reversed-phase conditions enabled simultaneous and fast quantification of levosimendan in the negative and the metabolites in the positive ionization mode in a single run within 2 min. Interestingly and unexpectedly, constitutional isomers of levosimendan metabolites with identical mass transitions and similar retention times were observed in surgical patients' samples, which we identified as the metamizole metabolites 4-aminoantipyrine and 4-acetamidoantipyrine. A longer C8 column and a modified mobile phase enabled selective quantification of all analytes in a single run within 7 min. We developed, validated, and applied highly sensitive LC-ESI-MS/MS methods for simultaneous quantification of levosimendan and its metabolites, enabling efficient TDM of cardiac surgery patients even with additional metamizole administration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319272 | PMC |
http://dx.doi.org/10.3390/pharmaceutics14071454 | DOI Listing |
J Pharm Biomed Anal
March 2025
Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
Levosimendan is a positive inotrope and vasodilator used in patients with acute and chronic decompensated heart failure. It is metabolized into OR-1855 (inactive metabolite), which is further acetylated into OR-1896 (active metabolite having a prolonged half-life, hence a sustained effect). Levosimendan represents a valuable alternative to traditional inotropes with broad clinical applications in critically ill patients with cardiogenic shock, advanced heart failure and post-cardiac surgery.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2024
Doctoral Program Clinical Pharmacy, LMU University Hospital, LMU Munich, Germany.
Background: The inotropic drug levosimendan is often used as an individualized therapeutic approach perioperatively in cardiac surgery patients with cardiopulmonary bypass (CPB). Data regarding serum concentrations of levosimendan and its metabolites within this context is lacking.
Methods: In this retrospective descriptive proof-of-concept study, total serum concentrations (TSC) and unbound fractions (UF) of levosimendan and its metabolites OR-1896 and OR-1855 in cardiac surgery patients with CPB were measured using LC-ESI-MS/MS.
Biosens Bioelectron
May 2024
Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany. Electronic address:
In recent decades, significant progress has been made in the treatment of heart diseases, particularly in the field of personalized medicine. Despite the development of genetic tests, phenotyping and risk stratification are performed based on clinical findings and invasive in vivo techniques, such as stimulation conduction mapping techniques and programmed ventricular pacing. Consequently, label-free non-invasive in vitro functional analysis systems are urgently needed for more accurate and effective in vitro risk stratification, model-based therapy planning, and clinical safety profile evaluation of drugs.
View Article and Find Full Text PDFClin Pharmacokinet
February 2023
INSERM U1096, UNIROUEN, Normandie University, 76000, Rouen, France.
Background: Levosimendan (LVSMD) is a calcium-sensitizer inotropic and vasodilator agent whose use might have a beneficial effect on the weaning of venoarterial extracorporeal membrane oxygenation (VA-ECMO). In light of LVSMD pharmacological characteristics, we hypothesized that ECMO may induce major pharmacokinetic (PK) modifications for LVSMD and its metabolites.
Objective: The aim of this study was to investigate the PK of LVSMD and its metabolites, and to assess the effects of ECMO on PK parameters.
Pharmaceutics
July 2022
Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, 81377 Munich, Germany.
Levosimendan is used in severe chronic cardiac insufficiency, also within the peri-operative setting. Real-life pharmacokinetic data in surgical patients is lacking, making therapeutic drug monitoring (TDM) of levosimendan, its pharmacologically active metabolite OR-1896, and its intermediate OR-1855 important. A simultaneous highly sensitive quantification of levosimendan and its metabolites in small-volume samples has not yet been described.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!