In this study, lipase from immobilized by physical immobilization by the adsorption interactions and partially interfacial activation and mixed physical immobilization via interfacial activation and ion exchange was used in the kinetic resolution of the ketoprofen racemic mixture. The FTIR spectra of samples after immobilization of enzyme-characteristic signals can be seen, and an increase in particle size diameters upon immobilization is observed, indicating efficient immobilization. The immobilization yield was on the level of 93% and 86% for immobilization unmodified and modified support, respectively, whereas activity recovery reached around 90% for both systems. The highest activity of immobilized biocatalysts was observed at pH 7 and temperature 40 °C and pH 8 and 20 °C for lipase immobilized by physical immobilization by the adsorption interactions and partially interfacial activation and mixed physical immobilization via interfacial activation and ion exchange, respectively. It was also shown that over a wide range of pH (from 7 to 10) and temperature (from 20 to 60 °C) both immobilized lipases retained over 80% of their relative activity, indicating improvement of enzyme stability. The best solvent during kinetic resolution of enantiomers was found to be phosphate buffer at pH 7, which obtained the highest efficiency of racemic ketoprofen methyl ester resolution at the level of over 51%, followed by enantiomeric excess 99.85% in the presence of biocatalyst obtained by physical immobilization by the adsorption interactions and partially interfacial activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317814 | PMC |
http://dx.doi.org/10.3390/pharmaceutics14071443 | DOI Listing |
Cureus
December 2024
Department of Physical Therapy, School of Health Sciences, International University of Health and Welfare, Fukuoka, JPN.
Background: Several studies have suggested that approximately 10 hours of inactivity can reduce motor performance. Specifically, restricted lower limb movement may impair postural stability, subsequently increasing the incidence of falls. However, the relationship between postural sway and its related factors remains unclear.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University of China, Gongti South Rd, No. 8, Beijing, 100020, China.
Objective: This study aims to investigate changes in matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) levels in the intervertebral discs of New Zealand white rabbits under simulated overload and microgravity conditions, focusing on the expression of MMP1, MMP3, and TIMP1. The findings aim to provide a theoretical foundation for preventing and delaying lumbar disc degeneration in these environments.
Methods: Overload was simulated using an animal centrifuge, and microgravity was mimicked through tail suspension.
Cell Mol Life Sci
January 2025
Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
Background: Prolonged spaceflight is known to cause vascular deconditioning and remodeling. Tail suspension, a widely used spaceflight analog, is reported to result in vascular remodeling of rats. However, little is known about the cellular atlas of the heterogeneous cells of CA and FA from hindlimb-unloaded rats.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Innovation Center of Functional Genomics and Molecular Diagnostics Technology of Gansu Province, Lanzhou, China.
Improving the sensitivity of biosensor has always the major challenge to measure lower detection concentration of biological samples. In this paper, a novel optical fiber surface plasmon resonance (SPR) biosensor based on TiC MXene/GNRs synergistically highly enhanced sensitivity was proposed. The TiC MXene and GNRs were coated on the optical fiber sensing probe by the electrostatic layer-by-layer (ELBL) assembly method.
View Article and Find Full Text PDFElife
January 2025
Centre for Neuroscience, Indian Institute of Science, Bengaluru, India.
Stress is a potent modulator of pain. Specifically, acute stress due to physical restraint induces stress-induced analgesia (SIA). However, where and how acute stress and pain pathways interface in the brain are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!