Promotion of Hair Regrowth by Transdermal Dissolvable Microneedles Loaded with Rapamycin and Epigallocatechin Gallate Nanoparticles.

Pharmaceutics

Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Published: July 2022

Interest in transdermal delivery methods for stimulating hair regrowth has been increasing recently. The microneedle approach can break the barrier of the stratum corneum through puncture ability and improve drug delivery efficiency. Herein, we report a dissolvable microneedle device for the co-delivery of rapamycin and epigallocatechin gallate nanoparticles that can significantly promote hair regeneration. Compared with the mice without any treatment, our strategy can facilitate hair growth within 7 days. Higher hair shaft growth rate and hair follicle density with inconspicuous inflammation were exhibited in C57BL/6 mice, elucidating its potential for clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318735PMC
http://dx.doi.org/10.3390/pharmaceutics14071404DOI Listing

Publication Analysis

Top Keywords

hair regrowth
8
rapamycin epigallocatechin
8
epigallocatechin gallate
8
gallate nanoparticles
8
hair
5
promotion hair
4
regrowth transdermal
4
transdermal dissolvable
4
dissolvable microneedles
4
microneedles loaded
4

Similar Publications

Alopecia areata (AA) is a prevalent autoimmune condition that causes sudden hair loss and poses significant psychological challenges to affected individuals. Current treatments, including corticosteroids and Janus kinase inhibitors, fail to provide long-term efficacy due to adverse effects and relapse after cessation. This study introduces a nanoparticle (NP) system that codeliver diphenylcyclopropenone (DPCP) and rapamycin (RAPA) prodrugs to induce immune tolerance and promote hair regeneration.

View Article and Find Full Text PDF

Ritlecitinib is an oral Janus kinase 3/tyrosine kinase expressed in hepatocellular carcinoma (JAK3/TEC) family kinase inhibitor approved for the treatment of severe alopecia areata (AA). Benefit-risk profiles of two doses of ritlecitinib (50 mg vs 30 mg once daily) were evaluated by integrating patient preferences and clinical efficacy and safety estimates for ritlecitinib. A discrete-choice experiment (DCE) was utilized to elicit preferences for benefit and safety attributes of systemic AA treatments.

View Article and Find Full Text PDF

Ritlecitinib is an orally bioavailable, small molecule that has been approved by the U.S. Food and Drug Administration (FDA) as a once-daily oral treatment option for people 12 years of age and older with severe alopecia areata.

View Article and Find Full Text PDF

Natural phenylethanoid glycoside forsythoside A alleviates androgenetic alopecia by selectively inhibiting TRPV3 channels in mice.

Eur J Pharmacol

January 2025

Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.

Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.

View Article and Find Full Text PDF

Although androgenic alopecia is the most prevalent among non-cicatricial alopecia, it still lacks an effective and safe treatment. Dutasteride (DUT) shows promising results in hair regrowth; however, oral DUT intake causes serious sexual adverse events. Hence, we produced liposomes with different bilayer structures and evaluated the capability of such systems in increasing DUT accumulation in the hair follicles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!