Tumor phototherapies are light-mediated tumor treatment modalities, which usually refer to tumor photothermal therapy (PTT) and photodynamic therapy (PDT). Due to the outstanding spatial-temporal control over treatment through light irradiation, tumor phototherapies display extremely low side effects during treatment and are believed to be a tumor treatment method with a clinical translation potential. However, current tumor phototherapy nanoplatforms face obstacles, including light irradiation-induced skin burning, tumor hypoxia microenvironments, limited light penetration depth, et al. Therefore, one important research direction is developing a tumor phototherapy nanoplatform with multifunctionality and enhanced pharmacological effects to overcome the complexity of tumor treatment. On the other hand, cyclodextrins (CDs) are starch-originated circular oligosaccharides with negligible toxicity and have been used to form supermolecular nanostructures through a host-guest interaction between the inner cavity of CDs and functional biomolecules. In the past few years, numerous studies have focused on CD-based multifunctional tumor phototherapy nanoplatforms with an enhanced photoeffect, responsive morphological transformation, and elevated drug bioavailability. This review focuses on the preparation methods of CD-based tumor phototherapy nanoplatforms and their unique physiochemical properties for improving anti-tumor pharmacological efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323899 | PMC |
http://dx.doi.org/10.3390/pharmaceutics14071375 | DOI Listing |
J Colloid Interface Sci
April 2025
High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:
Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China. Electronic address:
A pivotal pathway of photodynamic therapy (PDT) is to prompt mitochondrial damage by reactive oxygen species (ROS) generation, thus leading to cancer cell apoptosis. However, mitochondrial autophagy is induced during such a PDT process, which is a protective mechanism for cancer cell homeostasis, resulting in undermined therapeutic efficacy. Herein, we report a series of meticulously designed donor (D)-π-acceptor (A) photosensitizers (PSs), characterized by the strategic modulation of thiophene π-bridges, which exhibit unparalleled mitochondrial targeting proficiency.
View Article and Find Full Text PDFPharmaceutics
January 2025
Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
Nanoparticle-based drug delivery systems hold great promise for improving the effectiveness of anti-tumor therapies. However, their clinical translation remains hindered by several significant challenges, including intricate preparation processes, limited drug loading capacity, and concerns regarding potential toxicity. In this context, pure drug-assembled nanosystems (PDANSs) have emerged as a promising alternative, attracting extensive research interest due to their simple preparation methods, high drug loading efficiency, and suitability for large-scale industrial production.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, Collegium Medicum, University of Warmia and Mazury, Al. Wojska Polskiego 30, 10-229 Olsztyn, Poland.
Vascular cell adhesion molecule-1 (VCAM-1) and E-selectin are involved in different inflammatory diseases and may be potential cardiovascular risk biomarkers in psoriasis. They play an important role in regulating the recruitment and adhesion to endothelial cells during inflammation, affecting various conditions like vasculitis, atherosclerosis, and cardiovascular diseases. Positive outcomes have been observed when using Tumor Necrosis Factor Alpha (TNF-α) inhibitors and biological therapies that target selectins to control the functioning of endothelial cells and reduce inflammation in psoriasis and related conditions.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
Objective: To explore whether microneedle pretreatment can significantly improve the efficacy and safety of 5-aminolevulinic acid (ALA)-photodynamic therapy (PDT) in the treatment of oral leukoplakia.
Methods: A non-randomized controlled clinical trial was conducted. Patients with clinical and pathological diagnosis of oral leukoplakia in the Department of Oral Mucosa, Peking University School and Hospital of Stomatology were divided into experimental group and control group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!