A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineering of a Long-Acting Bone Morphogenetic Protein-7 by Fusion with Albumin for the Treatment of Renal Injury. | LitMetric

Engineering of a Long-Acting Bone Morphogenetic Protein-7 by Fusion with Albumin for the Treatment of Renal Injury.

Pharmaceutics

Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.

Published: June 2022

AI Article Synopsis

  • BMP7 can inhibit harmful kidney signaling but struggles with blood retention and bone-forming effects, limiting clinical use.
  • Researchers fused BMP7 with human serum albumin (HSA) to improve its effectiveness and stability.
  • The modified HSA-BMP7 showed a longer plasma half-life and reduced kidney fibrosis in animal models, suggesting it could be a promising treatment for kidney damage.

Article Abstract

The bone morphogenetic protein-7 (BMP7) is capable of inhibiting TGF-β/Smad3 signaling, which subsequently results in protecting the kidney from renal fibrosis, but its lower blood retention and osteogenic activity are bottlenecks for its clinical application. We report herein on the fusion of carbohydrate-deficient human BMP7 and human serum albumin (HSA-BMP7) using albumin fusion technology and site-directed mutagenesis. When using mouse myoblast cells, no osteogenesis was observed in the glycosylated BMP7 derived from Chinese hamster ovary cells in the case of unglycosylated BMP7 derived from and HSA-BMP7. On the contrary, the specific activity for the Smad1/5/8 phosphorylation of HSA-BMP7 was about 25~50-times lower than that for the glycosylated BMP7, but the phosphorylation activity of the HSA-BMP7 was retained. A pharmacokinetic profile showed that the plasma half-life of HSA-BMP7 was similar to that for HSA and was nearly 10 times longer than that of BMP7. In unilateral ureteral obstruction mice, weekly dosing of HSA-BMP7 significantly attenuated renal fibrosis, but the individual components, i.e., HSA or BMP7, did not. HSA-BMP7 also attenuated a cisplatin-induced acute kidney dysfunction model. The findings reported herein indicate that HSA-BMP7 has the potential for use in clinical applications for the treatment of renal injuries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316787PMC
http://dx.doi.org/10.3390/pharmaceutics14071334DOI Listing

Publication Analysis

Top Keywords

bone morphogenetic
8
morphogenetic protein-7
8
treatment renal
8
renal fibrosis
8
hsa-bmp7
8
glycosylated bmp7
8
bmp7 derived
8
hsa-bmp7 attenuated
8
bmp7
7
engineering long-acting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!