Diclofenac (DC) [2-(2,6-Dichloroanilino)phenyl]acetic acid,) and aceclofenac (AC) 2-[2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetyl]oxyacetic acid in substantia were subjected to ionizing radiation in the form of a beam of high-energy electrons from an accelerator in a standard sterilization dose of 25 kGy and higher radiation doses (50-400 kGy). We characterized non-irradiated and irradiated samples of DC and AC by using the following methods: organoleptic analysis (color, form), spectroscopic (IR, NMR, EPR), chromatographic (HPLC), and others (microscopic analysis, capillary melting point measurement, differential scanning calorimetry (DSC)). It was found that a absorbed dose of 50 kGy causes a change in the color of AC and DC from white to cream-like, which deepens with increasing radiation dose. No significant changes in the FT-IR spectra were observed, while no additional peaks were observed in the chromatograms, indicating emerging radio-degradation products (25 kGy). The melting point determined by the capillary method was 153.0 °C for AC and 291.0 °C for DC. After irradiation with the dose of 25 kGy for AC, it did not change, for DC it decreased by 0.5 °C, while for the dose of 400 kGy it was 151.0 °C and 286.0 °C for AC and DC, respectively. Both NSAIDs exhibit high radiation stability for typical sterilization doses of 25-50 kGy and are likely to be sterilized with radiation at a dose of 25 kGy. The influence of irradiation on changes in molecular dynamics and structure has been observed by H-NMR and EPR studies. This study aimed to determine the radiation stability of DC and AC by spectrophotometric, thermal and chromatographic methods. A standard dose of irradiation (25 kGy) was used to confirm the possibility of using this dose to obtain a sterile form of both NSAIDs. Higher doses of radiation (50-400 kGy) have been performed to explain the changes in DC and AC after sterilization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325154 | PMC |
http://dx.doi.org/10.3390/pharmaceutics14071331 | DOI Listing |
Gels
November 2024
State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture and Rural Affairs for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, China.
Potato starch is widely utilized in the food industry. Gamma irradiation is a cost-effective and environmentally friendly method for starch modification. Nevertheless, there is a scarcity of comprehensive and consistent knowledge regarding the physicochemical characteristics of high-dose gamma-irradiated potato starch, retrogradation properties in particular.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Natural Products Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
Background: Fresh vegetables are commodities that have a high tendency to deteriorate after harvest, causing significant losses in economic and environmental costs associated with plant food loss. Therefore, this study was carried out to evaluate the effects of both un-irradiated (UISA) and irradiated sodium alginate (ISA) as an edible coating for preserving cherry tomato fruits under storage conditions. The FTIR, XRD, TGA, SEM, and TEM were used to characterize the UISA and ISA (25, 50, 75, and 100 kGy), which demonstrated that the alginate polymer was degraded and low molecular-weight polysaccharides were formed as a result of irradiation, particularly with the 100 kGy dose level.
View Article and Find Full Text PDFbioRxiv
December 2024
Stanford Blood Center, Stanford Health Care, Stanford, California, USA.
Background And Objectives: Apheresis platelets products and plasma are essential for medical interventions, but both still have inherent risks associated with contamination and viral transmission. Platelet products are vulnerable to bacterial contamination due to storage conditions, while plasma requires extensive screening to minimize virus transmission risks. Here we investigate rapid irradiation to sterilizing doses for bacteria and viruses as an innovative pathogen reduction technology.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
KISTEC (Kanagawa Institute of Industrial Science & Technology), 705-1, Shimoimaizumi, Ebina 243-0435, Japan.
In short-carbon-fiber-reinforced polyamide 66 articles shaped by 3D printing (3D-SCFRPA66), the interfaces between printed layers are often susceptible to damage, and the composite is excessively brittle. Therefore, a novel treatment for 3D-printed short-carbon-fiber-reinforced polyamide (3D-SCFRPA66) using homogeneous low-potential electron beam irradiation (HLEBI) to enhance tensile properties was investigated. In 3D-SCFRPA66 samples, ductility was measured based on the following parameters: strain at tensile strength (corresponding to homogeneous deformation) () and resistance energy to homogeneous deformation, a measure of toughness (), which were both substantially increased.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, Universdad Carlos III de Madrid, Avenida de la Universidad, 30, 28911 Leganés, Spain.
This work describes the effects of using neutron irradiation on cellulose and non-destructive methods to analyze linen fabrics of high heritage value. For this purpose, 8 samples were irradiated with increasing doses of neutrons and gamma rays up to 166 kGy of total dose. The samples were characterized by techniques such as ultraviolet luminescence, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, and the nuclear magnetic resonance (NMR) technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!