Despite their incredible contribution to fighting viral infections, antiviral viral resistance is an increasing concern and often arises due to unfavorable physicochemical and biopharmaceutical properties. To address this kind of issue, lipid nanocapsules (LNC) are developed in this study, using efavirenz (EFV) as a drug model. EFV solubility was assessed in water, Labrafac Lipophile and medium chain triglycerides oil (MCT oil). EFV turned out to be more soluble in the two latter dissolving media (solubility > 250 mg/mL); hence, given its affordability, MCT oil was used for LNC formulation. LNC were prepared using a low-energy method named phase inversion, and following a design of experiments process. This one resulted in polynomial models that predicted LNC particle size, polydispersity index and zeta potential that were, respectively, around 50 nm, below 0.2 and below −33 mV, for the optimized formulations. Once synthesized, we were able to achieve an encapsulation efficacy of 87%. On the other hand, high EFV release from the LNC carrier was obtained in neutral medium as compared to acid milieu (pH 4) with, respectively, 42 and 27% EFV release within 74 h. Other characterization techniques were applied and further supported the successful encapsulation of EFV in LNCs in an amorphous form. Stability studies revealed that the developed LNC were quite stable over the period of 28 days. Ultimately, LNCs have been demonstrated to improve the biopharmaceutical properties of EFV and could therefore be used to fight against antiviral resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324270 | PMC |
http://dx.doi.org/10.3390/pharmaceutics14071318 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!