Curcumin has been demonstrated to exhibit photosensitized bactericidal activity. However, the full exploitation of curcumin as a photo-pharmaceutical active principle is hindered by fast deactivation of the excited state through the transfer of the enol proton to the keto oxygen. Introducing an asymmetry in the molecular structure through acting on the phenyl substituents is expected to be a valuable strategy to impair this undesired de-excitation mechanism competing with the therapeutically relevant ones. In this study, two asymmetric curcumin analogs were synthesized and characterized as to their electronic-state transition spectroscopic properties. Fluorescence decay distributions were also reconstructed. Their analysis confirmed the substantial stabilization of the fluorescent state with respect to the parent compound. Nuclear magnetic resonance experiments were performed with the aim of determining the structural features of the keto-enol ring and the strength of the keto-enol hydrogen bond. Electronic structure calculations were also undertaken to elucidate the effects of substitution on the features of the keto-enol semi-aromatic system and the proneness to proton transfer. Finally, their singlet oxygen-generation efficiency was compared to that of curcumin through the 9,10-dimethylanthracene fluorescent assay.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321223 | PMC |
http://dx.doi.org/10.3390/ph15070843 | DOI Listing |
ACS Phys Chem Au
November 2024
Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
OaPAC is a photoactivated enzyme that forms a homodimer. The two blue-light using flavin (BLUF) photoreceptor domains are connected to the catalytic domains with long coiled-coil C-terminal helices. Upon photoreception, reorganization of the hydrogen bonding network between Tyr6, Gln48, and the chromophore in the BLUF domain and keto-enol tautomerization of Gln48 are thought to occur.
View Article and Find Full Text PDFFree Radic Biol Med
November 2024
State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., 730000, Lanzhou, Gansu, China. Electronic address:
The development of Cu(II) ionophores for targeted disruption of aberrant redox homeostasis in cancer cells has been considered an appealing strategy in the field of anticancer research. This study presents the first identification of tanshinone I (Ts1), a natural o-quinone, as a Cu(II) ionophore. Structure-activity relationship studies on tanshinones and mechanistic investigations reveal that the presence of Cu(II) effectively promotes the tautomerization of Ts1 from its diketo to keto-enol forms, thereby facilitating its sequential proton-loss Cu(II) chelation, and enabling it to function as a Cu(II) ionophore due to its structural features including the presence of an o-quinone moiety, a benzyl hydrogen, and a large conjugated system.
View Article and Find Full Text PDFOrg Lett
November 2024
Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China.
Molecular rearrangement via carbene transfer is a powerful tool to access molecular diversity. Herein, we describe an efficient approach to selective pyridyl/aryl relocation via a rhodium-catalyzed aminoarylation of diazo compounds, providing a promising strategy to access -pyridyl N-alkylated pyridone scaffolds in a single operation. This reaction features the novel reactivity of oxy-pyridinium ylide, rhodium-associated five-membered transition state, and 1,4-pyridyl/aryl relocation.
View Article and Find Full Text PDFPest Manag Sci
October 2024
Research and Development, Weed Control Research, Bayer AG, Crop Science Division, Industriepark Höchst, Frankfurt am Main, Germany.
The sustainable control of weed populations, particularly resistant species, is a significant challenge in agriculture around the world. The α-aryl-keto-enol (aryl-KTE) class of acetyl-CoA carboxylase (ACCase)-inhibiting herbicides represent a possible solution for the control of resistant grasses even though achieving crop selectivity remains a challenge. Herein, we present some of our investigations into identifying the most promising structural features within the aryl-KTE class that give the highest chance of achieving soybean crop selectivity, whilst also maintaining strong and broad efficacy against problematic weed species.
View Article and Find Full Text PDFChemMedChem
November 2024
School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that has roles in innate and adaptive human immune responses, as well as inflammation. MIF exerts its biological activity by binding to the cell surface receptor CD74 as well as intracellular signalling proteins. MIF also possesses keto-enol tautomerase activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!