Bacteria accumulate osmolytes to prevent cell dehydration during hyperosmotic stress. A sudden change to a hypotonic environment leads to a rapid water influx, causing swelling of the protoplast. To prevent cell lysis through osmotic bursting, mechanosensitive channels detect changes in turgor pressure and act as emergency-release valves for the ions and osmolytes, restoring the osmotic balance. This adaptation mechanism is well-characterized with respect to the osmotic challenges bacteria face in environments such as soil or an aquatic habitat. However, mechanosensitive channels also play a role during infection, e.g., during host colonization or release into environmental reservoirs. Moreover, recent studies have proposed roles for mechanosensitive channels as determinants of antibiotic susceptibility. Interestingly, some studies suggest that they serve as entry gates for antimicrobials into cells, enhancing antibiotic efficiency, while others propose that they play a role in antibiotic-stress adaptation, reducing susceptibility to certain antimicrobials. These findings suggest different facets regarding the relevance of mechanosensitive channels during infection and antibiotic exposure as well as illustrate that they may be interesting targets for antibacterial chemotherapy. Here, we summarize the recent findings on the relevance of mechanosensitive channels for bacterial infections, including transitioning between host and environment, virulence, and susceptibility to antimicrobials, and discuss their potential as antibacterial drug targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322971 | PMC |
http://dx.doi.org/10.3390/ph15070770 | DOI Listing |
J Cell Biol
March 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, Address: Hungary, 4032 Debrecen Nagyerdei krt. 98. Tel. +36-52-255-600.
Context: Increased orbital tissue volume due to matrix expansion, orbital fibroblast (OF) proliferation and adipocyte differentiation are the hallmarks of thyroid eye disease (TED). Their combination with the presence of hyaluronan-bound excess water in the constrains of the bony orbit results in increased intraorbital pressure. High intraorbital pressure, along with changes in the mechanical properties of orbital tissues, may lead to the activation of mechanosensitive receptors.
View Article and Find Full Text PDFRedox Biol
December 2024
Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK. Electronic address:
Ca overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function during myocardial I/R injury.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Biology, Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany. Electronic address:
Pseudomonas aeruginosa is a hard-to-treat human pathogen for which new antimicrobial agents are urgently needed. P. aeruginosa is known for forming biofilms, a complex aggregate of bacteria embedded in a self-generated protective matrix that enhance its resistance to antibiotics and the immune system.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Zoology, University of São Paulo, São Paulo, SP, Brazil.
Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!