Stable Episomal Transfectant Promastigotes Over-Expressing the DEVH1 RNA Helicase Gene Down-Regulate Parasite Survival Genes.

Pathogens

Laboratory of Molecular Parasitology and Vaccines, Biological, Immunological, and Chemical Drug Development for Global Health Unit (BICS), Department of Cellular and Molecular Biology, Center for Biological Research Margarita Salas, Spanish Research Council (CIBMS-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain.

Published: July 2022

The compartmentalization of untranslated mRNA molecules in granules occurring in many eukaryotic organisms including trypanosomatids involves the formation of complexes between mRNA molecules and RNA-binding proteins (RBPs). The putative ATP-dependent DEAD/H RNA helicase (DEVH1) from (Kinetoplastida: Trypanosomatidae) is one such proteins. The objective of this research is finding differentially expressed genes in a stable episomal transfectant promastigote line over-expressing DEVH1 in the stationary phase of growth in axenic culture to get insight into the biological roles of this RNA helicase in the parasite. Interestingly, genes related to parasite survival and virulence factors, such as the hydrophilic surface protein/small hydrophilic endoplasmic reticulum protein (HASP/SHERP) gene cluster, an amastin, and genes related to reactive oxygen species detoxification are down-regulated in DEVH1 transfectant promastigotes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323391PMC
http://dx.doi.org/10.3390/pathogens11070761DOI Listing

Publication Analysis

Top Keywords

rna helicase
12
stable episomal
8
episomal transfectant
8
transfectant promastigotes
8
over-expressing devh1
8
parasite survival
8
mrna molecules
8
promastigotes over-expressing
4
devh1
4
devh1 rna
4

Similar Publications

RNA G-quadruplexes (rG4s) are non-canonical secondary nucleic acid structures found in the transcriptome. They play crucial roles in gene regulation by interacting with G4-binding proteins (G4BPs) in cells. rG4-G4BP complexes have been associated with human diseases, making them important targets for drug development.

View Article and Find Full Text PDF

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are key regulators during gastric cancer (GC) development and may be viable treatment targets. In the present study, we showed that the expression of the long intergenic noncoding RNA 01016 (LINC01016) is significantly higher in GC tissues with lymph node metastasis (LNM) than those without LNM. LINC01016 overexpression predicts a poorer relapse-free survival (RFS) and overall survival (OS).

View Article and Find Full Text PDF

Cell fate decisions during cortical development sculpt the identity of long-range connections that subserve complex behaviors. These decisions are largely dictated by mutually exclusive transcription factors, including CTIP2/Bcl11b for subcerebral projection neurons and BRN1/Pou3f3 for intra-telencephalic projection neurons. We have recently reported that the balance of cortical CTIP2-expressing neurons is altered in a mouse model of DDX3X syndrome, a female-biased neurodevelopmental disorder associated with intellectual disability, autism spectrum disorder, and significant motor challenges.

View Article and Find Full Text PDF

A novel ADP-directed chaperone function facilitates the ATP-driven motor activity of SARS-CoV helicase.

Nucleic Acids Res

January 2025

Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea.

Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!