Integrating the Gut Microbiome and Stress-Diathesis to Explore Post-Trauma Recovery: An Updated Model.

Pathogens

School of Health Sciences, Faculty of Medicine and Health, The Kolling Institute, The University of Sydney, Sydney, NSW 2065, Australia.

Published: June 2022

Musculoskeletal conditions of traumatic and non-traumatic origin represent an ongoing health challenge. While the last three decades have seen significant advancement in our understanding of musculoskeletal conditions, the mechanisms of a delayed or lack of recovery are still a mystery. Here, we present an expansion of the integrated stress-diathesis model through the inclusion of the gut microbiome. Connecting the microbiome with known adverse neurobiologic, microbiologic and pathophysiologic sequelae following an injury, trauma or stressful event may help improve our knowledge of the pathogenesis of poor recovery. Such knowledge could provide a foundation for the exploration and development of more effective interventions to prevent the transition from acute to chronic pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323039PMC
http://dx.doi.org/10.3390/pathogens11070716DOI Listing

Publication Analysis

Top Keywords

gut microbiome
8
musculoskeletal conditions
8
integrating gut
4
microbiome stress-diathesis
4
stress-diathesis explore
4
explore post-trauma
4
post-trauma recovery
4
recovery updated
4
updated model
4
model musculoskeletal
4

Similar Publications

Exploring the microbiome-gut-testis axis in testicular germ cell tumors.

Front Cell Infect Microbiol

January 2025

Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia.

The microbiome-gut-testis axis has emerged as a significant area of interest in understanding testicular cancer, particularly testicular germ cell tumors (TGCTs), which represent the most common malignancy in young men. The interplay between the gut and testicular microbiomes is hypothesized to influence tumorigenesis and reproductive health, underscoring the complex role of microbial ecosystems in disease pathology. The microbiome-gut-testis axis encompasses complex interactions between the gut microbiome, systemic immune modulation, and the local microenvironment of the testis.

View Article and Find Full Text PDF

The gut barrier encompasses several interactive, physical, and functional components, such as the gut microbiota, the mucus layer, the epithelial layer and the gut mucosal immunity. All these contribute to homeostasis in a well-regulated manner. Nevertheless, this frail balance might be disrupted for instance by westernized dietary habits, infections, pollution or exposure to antibiotics, thus diminishing protective immunity and leading to the onset of chronic diseases.

View Article and Find Full Text PDF

Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.

Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).

View Article and Find Full Text PDF

Synergistic defecation effects of subsp. BL-99 and fructooligosaccharide by modulating gut microbiota.

Front Immunol

January 2025

Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, Department of Nutrition and Health, China Agricultural University, Beijing, China.

Introduction: Synbiotics have revealed the possibility of improving constipation through gut microbiota. The synergistic efficacy of subsp. lactis BL-99 (BL-99) and fructooligosaccharide (FOS) on constipation have not been investigated.

View Article and Find Full Text PDF

Background: Dysbiosis of the lung microbiome can contribute to the initiation and progression of lung cancer. Synchronous multiple primary lung cancer (sMPLC) is an increasingly recognized subtype of lung cancer characterized by high morbidity, difficulties in early detection, poor prognosis, and substantial clinical challenges. However, the relationship between sMPLC pathogenesis and changes in the lung microbiome remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!