This study focuses on fabricating efficient CdS/CdTe thin-film solar cells with thermally evaporated cuprous iodide (CuI) as hole-transporting material (HTM) by replacing Cu back contact in conventional CdS/CdTe solar cells to avoid Cu diffusion. In this study, a simple thermal evaporation method was used for the CuI deposition. The current-voltage characteristic of devices with CuI films of thickness 5 nm to 30 nm was examined under illuminations of 100 mW/cm (1 sun) with an Air Mass (AM) of 1.5 filter. A CdS/CdTe solar cell device with thermally evaporated CuI/Au showed power conversion efficiency (PCE) of 6.92% with J, , and FF of 21.98 mA/cm, 0.64 V, and 0.49 under optimized fabrication conditions. Moreover, stability studies show that fabricated CdS/CdTe thin-film solar cells with CuI hole-transporters have better stability than CdS/CdTe thin-film solar cells with Cu/Au back contacts. The significant increase in FF and, hence, PCE, and the stability of CdS/CdTe solar cells with CuI, reveals that Cu diffusion could be avoided by replacing Cu with CuI, which provides good band alignment with CdTe, as confirmed by XPS. Such an electronic band structure alignment allows smooth hole transport from CdTe to CuI, which acts as an electron reflector. Hence, CuI is a promising alternative stable hole-transporter for CdS/CdTe thin-film solar cells that increases the PCE and stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315675PMC
http://dx.doi.org/10.3390/nano12142507DOI Listing

Publication Analysis

Top Keywords

solar cells
28
cds/cdte thin-film
20
thin-film solar
20
thermally evaporated
12
cds/cdte solar
12
cds/cdte
8
solar
8
cui
8
cells cui
8
stability cds/cdte
8

Similar Publications

Comparative Study of Iminodibenzyl and Diphenylamine Derivatives as Hole Transport Materials in Inverted Perovskite Solar Cells.

Chemistry

January 2025

Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058, Erlangen, GERMANY.

Perovskite solar cells (PSCs) have recently achieved over 26% power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.

View Article and Find Full Text PDF

Carbon-based perovskite solar cells (C-PSCs) have the advantages of high stability and low cost, but their mean efficiency has become an obstacle to commercialization. Defects, which are widely distributed on the surface and bulk of films, are an important factor in C-PSCs for low efficiency. The conventional post-treatment method through forming a low-dimensional (LD) perovskite layer usually fails in manipulating the bulk defects.

View Article and Find Full Text PDF

Recent Advances in Polymorphism of Organic Solar Cells.

Small

January 2025

School of Electronics and Information, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, 710129, China.

As organic solar cells (OSCs) achieve notable advancements, a significant consensus has been highlighted that the device performance is intricately linked to the active layer morphology. With conjugated molecules being widely employed, intermolecular interactions exert substantial influence over the aggregation state and morphology formation, resulting in distinct molecular packing motifs, also known as polymorphism. This phenomenon is closely associated with processing conditions and exerts a profound impact on functional properties.

View Article and Find Full Text PDF

Achieving rational control over chemical and energetic properties at the perovskite/electron transport layer (ETL) interface is crucial for realizing highly efficient and stable next-generation inverted perovskite solar cells (PSCs). To address this, we developed multifunctional ferrocene (Fc)-based interlayers engineered to exhibit adjustable passivating and electrochemical characteristics. These interlayers are designed to minimize non-radiative recombination and, to modulate the work function (WF) and uniformity of the perovskite surface, thereby enhancing device performance.

View Article and Find Full Text PDF

Chemically tuned organic-inorganic hybrid halide perovskites based on bromide and chloride anions CH(NH)Pb(BrCl) (CH(NH): formamidinium ion, FA) have been crystallized and investigated by neutron powder diffraction (NPD), single crystal X-ray diffraction (SCXRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. FAPbBr and FAPbCl experience successive phase transitions upon cooling, lowering the symmetry from cubic to orthorhombic phases; however, these transitions are not observed for the mixed halide phases, probably due to compositional disorder. The band-gap engineering brought about by the chemical doping of FAPb (BrCl) perovskites (x = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!