Biomimetic nanomaterials (BNMs) are functional materials containing nanoscale components and having structural and technological similarities to natural (biogenic) prototypes. Despite the fact that biomimetic approaches in materials technology have been used since the second half of the 20th century, BNMs are still at the forefront of materials science. This review considered a general classification of such nanomaterials according to the characteristic features of natural analogues that are reproduced in the preparation of BNMs, including biomimetic structure, biomimetic synthesis, and the inclusion of biogenic components. BNMs containing magnetic, metal, or metal oxide organic and ceramic structural elements (including their various combinations) were considered separately. The BNMs under consideration were analyzed according to the declared areas of application, which included tooth and bone reconstruction, magnetic and infrared hyperthermia, chemo- and immunotherapy, the development of new drugs for targeted therapy, antibacterial and anti-inflammatory therapy, and bioimaging. In conclusion, the authors' point of view is given about the prospects for the development of this scientific area associated with the use of native, genetically modified, or completely artificial phospholipid membranes, which allow combining the physicochemical and biological properties of biogenic prototypes with high biocompatibility, economic availability, and scalability of fully synthetic nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316400PMC
http://dx.doi.org/10.3390/nano12142485DOI Listing

Publication Analysis

Top Keywords

biomimetic nanomaterials
8
biogenic prototypes
8
biomimetic
5
bnms
5
nanomaterials diversity
4
diversity technology
4
technology biomedical
4
biomedical applications
4
applications biomimetic
4
nanomaterials bnms
4

Similar Publications

Moving Toward Biomimetic Tissue-Engineered Scaffolds.

Nanomaterials (Basel)

December 2024

Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy.

Advancing experimental methodologies to accurately replicate the physiological and pathological characteristics of biological tissues is pivotal in tissue engineering [...

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a powerful optical sensing platform that amplifies the target signals by Raman scattering. Despite SERS enabling a meager detection limit, even at the single-molecule level, SERS also tends to equally enhance unwanted molecules due to the non-specific binding of noise molecules in clinical samples, which complicates its use in complex samples such as bodily fluids, environmental water, or food matrices. To address this, we developed a novel non-fouling biomimetic SERS sensor by self-assembling an anti-adhesive, anti-fouling, and size-selective Lubricin (LUB) coating on gold nanoparticle (AuNP) functionalized glass slide surfaces via a simple drop-casting method.

View Article and Find Full Text PDF

Biomimetic photosynthesis, which leverages nanomaterials with light-responsive capabilities, represents an innovative approach for replicating natural photosynthetic processes for green and sustainable energy conversion. In this study, a covalent-organic framework (COF)-based artificial photosynthesis system is realized through the co-assembly of adenosine triphosphate (ATP) synthase and a light-responsive proton generator onto an imine-based COF, RT-COF-1. This system demonstrates an ATP production rate of 0.

View Article and Find Full Text PDF

Sustainable High-Performance Structural Materials from Micro/nanostructured Corn Stover.

Nano Lett

December 2024

Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.

Corn stover, as an abundant agricultural residue, has not been well reutilized due to the lack of efficient utilization methods. Based on micro/nanoscale structure design of corn stover, we report an environmentally friendly strategy to prepare micro/nanostructured corn stover-based building blocks. Then, through the directed deformation assembly approach, a high value-added corn stover structural material (CSSM) that with higher strength and more excellent thermal stability than most widely used plastics and wood-plastic composites can be prepared.

View Article and Find Full Text PDF

Purpose: Fetal nucleated red blood cells (fNRBCs) in the peripheral blood of pregnant women contain comprehensive fetal genetic information, making them an ideal target for non-invasive prenatal diagnosis (NIPD). However, challenges in identifying, enriching, and detecting fNRBCs limit their diagnostic potential.

Methods: To overcome these obstacles, we developed a novel biomimetic chip, replicating the micro-nano structure of red rose petals on polydimethylsiloxane (PDMS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!