Industrial wastewater containing large amounts of organic pollutants is a severe threat to the environment and human health. Thus, the rapid detection and removal of these pollutants from wastewater are essential to protect public health and the ecological environment. In this study, a multifunctional and reusable surface-enhanced Raman scattering (SERS) substrate by growing Ag nanoparticles (NPs) on ZnO nanorods (NRs) was produced for detecting and degrading Rhodamine B (RhB) dye. The ZnO/Ag substrate exhibited excellent sensitivity, and the limit of detection (LOD) for RhB was as low as 10 M. Furthermore, the SERS substrate could efficiently degrade RhB, with a degradation efficiency of nearly 100% within 150 min. Moreover, it retained good SERS activity after multiple repeated uses. The interaction between Ag NPs, ZnO, and RhB was further investigated, and the mechanism of SERS and photocatalysis was proposed. The as-prepared ZnO/Ag composite structure could be highly applicable as a multifunctional SERS substrate for the rapid detection and photocatalytic degradation of trace amounts of organic pollutants in water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319571 | PMC |
http://dx.doi.org/10.3390/nano12142394 | DOI Listing |
Anal Chim Acta
May 2025
Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, PR China. Electronic address:
The sensitive, efficient, and simultaneous assay of creatinine and urea in different body fluid is crucial for the daily detection and treatment of chronic kidney disease. Here, we exploited a versatile composite surface enhanced Raman scattering (SERS) substrate of polydimethylsiloxane (PDMS)-flower-like ZIF-67@Ag nanoparticles (NPs) based on simple in-situ growth and ion sputtering strategies. The plasmonic Ag NPs assembled on the three-dimensional anisotropic ZIF-67 matrix, facilitating numerous resonant electromagnetic "hotspots".
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Raman-based theranostics has demonstrated great potential for sensitive real-time imaging and treatment. However, these advanced materials, primarily depending on the SERS technique, encounter clinical concerns regarding substrate biosafety. Herein, we molecularly engineered a substrate-free SICTERS small molecule, namely BTT-TPA (bis-thienyl-substituted benzotriazole selenadiazole derivative structures), possessing both ultrasensitive Raman signals and excellent photothermal effects based on self-stacking.
View Article and Find Full Text PDFNanoscale
March 2025
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
Raman spectroscopy has demonstrated significant potential in molecular detection, analysis, and identification, particularly when it adopts single-molecule surface-enhanced Raman scattering (SM-SERS) substrates. A recent SM-SERS scheme incorporates two-fold Raman enhancement mechanisms: the electromagnetic enhancement enabled by a plasmonic nanogap hotspot formed from gold sphere nanoparticles sitting on a gold mirror and the chemical enhancement enabled by a two-dimensional material, WS, inserted into the nanogap. In this work we integrate multiple advanced concepts and techniques to achieve remarkable performance improvements of SM-SERS.
View Article and Find Full Text PDFLangmuir
March 2025
School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
In this study, we employed density functional theory to investigate the interactions between type B fumonisins (FB1, FB2, and FB3) and silver-enhancing substrates in the surface-enhanced Raman scattering effect. Theoretical calculations of the molecular electrostatic potential reveal that the oxygen atoms at the terminal of the tricarboxylic acid structure in all three molecules exhibit the strongest electronegativity, suggesting these sites as potential active sites for molecular-substrate interactions. Molecular-Ag vertex-binding/surface-binding complex models were constructed based on possible docking modes between the molecule and the substrate, and binding energies were calculated.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2025
Jiangnan University, School of Food Science and Technology, CHINA.
Sensitive and specific biomarkers are needed for early diagnosis of neurodegenerative diseases, such as Alzheimer's disease (AD). Herein, a new type of chiral gold nanostructure induced by D-/L-cysteine-leucine dipeptides with a g-factor of 0.1 was successfully synthesized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!