Polycystic ovary syndrome (PCOS) is a common multisystem disease with reproductive, metabolic and psychological abnormalities. It is characterized by a high prevalence rate in women of childbearing age and highly heterogeneous clinical manifestations, which seriously harm women's physical and mental health. Quercetin (QUR) is a natural compound of flavonoids found in a variety of foods and medicinal plants. It can intervene with the pathologic process of PCOS from multiple targets and channels and has few adverse reactions. It is mentioned in this review that QUR can improve ovulation disorder, relieve Insulin resistance (IR), reduce androgen, regulate lipid metabolism, regulate gut microbiota and improve vascular endothelial function, which is of great significance in the treatment of PCOS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325244 | PMC |
http://dx.doi.org/10.3390/molecules27144476 | DOI Listing |
Front Mol Biosci
January 2025
Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic condition impacting millions of women worldwide. This study sought to identify granulosa cell endoplasmic reticulum stress (GCERS)-related differentially expressed genes (DEGs) between women with PCOS and those without PCOS using bioinformatics and to investigate the related molecular mechanisms.
Methods: Two datasets were downloaded from GEO and analysed using the limma package to identify DEGs in two groups-PCOS and normal granulosa cells.
Front Endocrinol (Lausanne)
January 2025
Department of Obstetrics and Gynaecology, Assiut University, Assiut, Egypt.
Oxidative stress (OS) is established as a key factor in the etiology of both male and female infertility, arising from an imbalance between reactive oxygen species (ROS) production and the endogenous antioxidant (AOX) defenses. In men, OS adversely affects sperm function by inducing DNA damage, reducing motility, significantly impairing sperm vitality through plasma membrane peroxidation and loss of membrane integrity, and ultimately compromising overall sperm quality. In women, OS is implicated in various reproductive disorders, including polycystic ovary syndrome, endometriosis, and premature ovarian failure, leading to diminished oocyte quality, disrupted folliculogenesis, and poorer reproductive outcomes.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina.
Introduction: Polycystic Ovary Syndrome (PCOS) affects 5-20% of reproductive-aged women. Insulin resistance (IR) is common in PCOS with consequent elevated risks of metabolic disorders and cardiovascular mortality. PCOS and obesity are complex conditions associated with Metabolic Syndrome (MS), contributing to cardiovascular disease and type 2 diabetes mellitus (T2D).
View Article and Find Full Text PDFBMC Womens Health
January 2025
Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou City, Gansu, 730000, China.
Objectives: Polycystic ovary syndrome (PCOS) represents a significant and persistent metabolic disorder, emerging as a leading factor contributing to infertility. Despite its profound impact, there remains an inadequate understanding of the global burden of PCOS-related infertility across diverse regions and countries. The aim of this study was to evaluate the global, regional, and national burden of PCOS-related infertility from 1990 to 2019.
View Article and Find Full Text PDFSci Rep
January 2025
The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No. 26 Heping Road, Harbin, 150040, Heilongjiang, China.
Polycystic Ovary Syndrome (PCOS) is a complex endocrine disorder affecting women of childbearing age, and we aimed to reveal its underlying molecular mechanisms. Gene expression profiles from GSE138518 and GSE155489, and single-cell RNA sequencing (scRNA-seq) data from PRJNA600740 were collected and subjected to bioinformatics analysis to identify the complex molecular mechanisms of PCOS. The expression of genes was detected by RT-qPCR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!