AI Article Synopsis

  • - Wild rice has unique resistance to biotic (like diseases) and abiotic (like environmental stress) factors, making it a valuable resource for improving cultivated rice varieties.
  • - Researchers identified 46 bacterial strains from the rhizosphere and leaf area of four wild rice varieties, finding that 18 strains inhibited rice blast disease and 33 could enhance nutrient availability.
  • - Three specific bacterial strains (499G2, 499G3, and 499G4) positively influenced the growth of cultivated rice and boosted its resistance to rice blast by improving nutrient content and increasing antioxidant enzyme activity.

Article Abstract

Wild rice is an important improved resource for cultivated rice and its unique ability to resist biotic and abiotic stress has attracted the attention of many scholars. The microbial community structure in the rhizosphere and leaf area of different rice varieties is also different, which may be one of the reasons for the difference in stress resistance between wild rice and cultivated rice. Forty-six bacteria were screened from the rhizosphere and phyllospheric of four different wild rice varieties. The results of functions of the screened strains showed that 18 strains had a good inhibitory effect on rice blast, and 33 strains had the ability to dissolve phosphorus, potassium, or fix nitrogen. Through potted experiment, the three bacterial strains, 499G2 (), 499G3 (), and 499G4 () have a positive effect on the growth of cultivated rice in addition to the resistance to rice blast. The contents of total nitrogen, total phosphorus, total potassium, indole acetic acid (IAA), and chlorophyll in plant leaves were increased. In addition, in the verification test of rice blast infection, the application of inoculants can significantly reduce the content of malondialdehyde (MDA), increase the content of soluble sugar, and increase the activity of plant antioxidant enzymes, which may thereby improve rice in resisting to rice blast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324538PMC
http://dx.doi.org/10.3390/microorganisms10071468DOI Listing

Publication Analysis

Top Keywords

wild rice
16
rice blast
16
rice
13
cultivated rice
12
rice varieties
8
culturable screening
4
screening plant
4
plant growth-promoting
4
growth-promoting biocontrol
4
biocontrol bacteria
4

Similar Publications

Energy metabolism, antioxidant defense system, metal transport, and ion homeostasis are key contributors to Cd tolerance in SSSL derived from wild rice.

J Hazard Mater

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Cadmium (Cd) toxicity poses major challenges to rice cultivation, affecting plant growth and development. Wild rice and nanoparticles offer promising strategies to enhance Cd tolerance, yet little is known about their combined effects. This study evaluates the single segment substitution line (SG004) from Oryza glumaepatula (wild rice) and its response to Cd stress compared to cultivated rice (HJX74).

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

The COP9 signalosome (CSN) is a highly conserved multi-subunit protein complex, with CSN1 being its largest and most conserved subunit. The N-terminal function of CSN1 plays a pivotal and intricate role in plant photomorphogenesis and seedling development. Moreover, CSN is essential for far-red light-mediated photomorphogenesis in seedlings, but the function of OsCSN1 in seedling growth and development under far-red light conditions has not been determined.

View Article and Find Full Text PDF

The PDR-type ABC transporter OsPDR1 is involved in leaf senescence by influencing melatonin biosynthesis in rice.

Biochem Biophys Res Commun

January 2025

National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:

Leaf senescence is a complex developmental process that is regulated by multiple genetic and environmental factors. Understanding the mechanisms underlying the regulation of leaf senescence will provide valuable insights for manipulation of this trait in crops. Here, we report that the ATP-binding cassette (ABC) transporter OsPDR1 is involved in promoting leaf senescence in rice.

View Article and Find Full Text PDF

This study assessed the effects of fenobucarb (F) (1%, 10%, and 20% of the LC-96h value) on the brain cholinesterase (AChE) activity, food intake (FI), feed conversion rate (FCR), and growth of silver barb (, Bleeker, 1849). It also assessed the AChE inhibition levels that cause the abnormal swimming, behavior, and mortality of silver barb and how the feeding regime affects the recovery rate of the AChE activity. The results showed that the brain AChE inhibition increased with the F concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!