AI Article Synopsis

Article Abstract

This work was aimed at the development of an immobilized artificial consortium (IMAC) based on microorganisms belonging to the Gram-positive and Gram-negative bacterial cells capable of jointly carrying out the rapid and effective degradation of different organophosphorus pesticides (OPPs): paraoxon, parathion, methyl parathion, diazinon, chlorpyrifos, malathion, dimethoate, and demeton-S-methyl. A cryogel of poly(vinyl alcohol) was applied as a carrier for the IMAC. After a selection was made between several candidates of the genera and , the required combination of two cultures ( and ) was found. A further change in the ratio between the biomass of the cells inside the granules of IMAC, increasing the packing density of cells inside the same granules and decreasing the size of the granules with IMAC, gave a 225% improvement in the degradation activity of the cell combination. The increase in the velocity and the OPP degradation degree was 4.5 and 16 times greater than the individual and cells, respectively. Multiple uses of the obtained IMAC were demonstrated. The increase in IMAC lactonase activity confirmed the role of the cell quorum in the action efficiency of the synthetic biosystem. The co-inclusion of natural strains in a carrier during immobilization strengthened the IMAC activities without the genetic enhancement of the cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317566PMC
http://dx.doi.org/10.3390/microorganisms10071394DOI Listing

Publication Analysis

Top Keywords

organophosphorus pesticides
8
cells inside
8
inside granules
8
granules imac
8
imac
7
cells
5
"unity struggle
4
struggle opposites"
4
opposites" basis
4
basis functioning
4

Similar Publications

Organophosphorus pesticides (OPs) pose significant environmental and health risks, and their detoxification through catalytic hydrolysis using zirconium-based metal-organic frameworks (Zr-MOFs) has attracted considerable interest due to the strong Lewis acid metal ions. Albeit important, the defects of the materials for OP hydrolysis (e.g.

View Article and Find Full Text PDF

The rapid growth in the global population has led to increased environmental pollution and energy demands, exacerbating the issue of environmental contamination. This contamination is significantly impacted by various types of pesticides found in water sources, which pose serious health risks to humans, animals, and aquatic ecosystems. In response, extensive research into water treatment technologies has been conducted, focusing on efficient methods to remove these pollutants, with advanced oxidation processes and the utilization of tungsten trioxide (WO) as a photocatalyst showing promising results.

View Article and Find Full Text PDF

A multiplex fluorescent microsphere immunochromatography assay for simultaneous detection of phorate, fenthion, and profenofos.

Food Chem

January 2025

International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. Electronic address:

The mass production and use of organophosphorus pesticides (OPs) have led to a threat to human health. Therefore, establishing a sensitive, rapid, and high-throughput detection method is of great importance. In this study, computer-aided molecular design was firstly applied to design the specific haptens of phorate (PHO), fenthion (FEN), and profenofos (PRO), and high-performance monoclonal antibodies against PHO, FEN, and PRO were prepared.

View Article and Find Full Text PDF

Introduction: Many patients acutely self-poisoned with organophosphorus insecticides have co-ingested ethanol. Currently, profenofos 50% emulsifiable concentrate (EC50) is commonly ingested for self-harm in Sri Lanka. Clinical experience suggests that ethanol co-ingestion makes management more difficult.

View Article and Find Full Text PDF

Self-powered photoelectrochemical sensor based on molecularly imprinted polymer-coupled CBFO photocathode and AgS/SnS photoanode for ultrasensitive dimethoate sensing.

Anal Chim Acta

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:

Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!