Analysis of Microbiota Persistence in Quebec's Terroir Cheese Using a Metabarcoding Approach.

Microorganisms

Department of Food Sciences and Nutrition, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6, Canada.

Published: July 2022

Environmental short amplicon sequencing, or metabarcoding, is commonly used to characterize the bacterial and fungal microbiota of cheese. Comparisons between different metabarcoding studies are complicated by the use of different gene markers. Here, we systematically compare different metabarcoding molecular targets using V3-V4 and V6-V8 regions of the bacterial 16S rDNA and fungal ITS1 and ITS2 regions. Taxonomic profiles varied depending on the molecular markers used. Based on data quality and detection capacity of the markers toward microorganisms usually associated with the dairy environment, the ribosomal regions V3-V4 and ITS2 were selected and further used to evaluate variability in the microbial ecosystem of terroir cheeses from the province of Quebec in Canada. Both fungal and bacterial ecosystem profiles were described for 32 different ready-to-eat bloomy-, washed- and natural-rind specialty cheese varieties. Among them, 15 were studied over two different production years. Using the Bray-Curtis dissimilarity index as an indicator of microbial shifts, we found that most variations could be explained by either a voluntary change in starter or ripening culture composition, or by changes in the cheesemaking technology. Overall, our results suggest the persistence of the microbiota between the two years studied-these data aid understanding of cheese microbiota composition and persistence during cheese ripening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316450PMC
http://dx.doi.org/10.3390/microorganisms10071381DOI Listing

Publication Analysis

Top Keywords

cheese
5
analysis microbiota
4
microbiota persistence
4
persistence quebec's
4
quebec's terroir
4
terroir cheese
4
metabarcoding
4
cheese metabarcoding
4
metabarcoding approach
4
approach environmental
4

Similar Publications

Background: Multidisciplinary lifestyle interventions are being researched to treat fibromyalgia. However, the impact of nutrition as a key treatment component is little studied. This study aimed to evaluate the effectiveness of the SYNCHRONIZE + lifestyle multidisciplinary intervention in improving adherence to the Mediterranean diet, nutrition quality and dietary intake pattern in persons with fibromyalgia and chronic fatigue syndrome.

View Article and Find Full Text PDF

Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning.

View Article and Find Full Text PDF

Canastra cheese, an artisanal cheese produced in Serra da Canastra-Brazil, has great cultural importance. Furthermore, this cheese has nutritional and sensory attributes that make it of great economic importance. Its microbiota is composed of different bacteria and yeasts.

View Article and Find Full Text PDF

Microbial fermentation is a primary method by which a variety of foods and beverages are produced. The term refers to the use of microbes such as bacteria, yeasts, and molds to transform carbohydrates into different substances. Fermentation is important for preserving, enhancing flavor, and improving the nutritional quality of various perishable foods.

View Article and Find Full Text PDF

Tannase, as a type of tannin-degrading enzyme, can catalyze the hydrolysis of ester and depside bonds in gallotannins, thereby releasing gallic acid and glucose. Based on this reaction mechanism, Tannase can effectively improve the problems of bitter taste, weak aroma, and tea cheese in tea infusion, and is therefore widely used in the tea industry. However, due to high production costs, difficulties in purification and recovery, and insufficient understanding of Tannase properties, the large-scale application of Tannase is severely limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!